Math, asked by vikram4627, 2 days ago

The period of real valued function f(x) + f(x + 4) = f(x + 2) + f(x + 6)

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\purple{\rm :\longmapsto\:\bf{ \: f(x) + f(x + 4) = f(x + 2) + f(x + 6) \: }}

Period means after what value of x, the function starts repeating itself. If for a real valued function f(x), if f(x + T) = f(x) then T is called period of f(x).

So, to find the period of f(x),

Let replace x by x + 2, we get

\purple{\rm :\longmapsto\:{f(x + 2) + f(x + 2 + 4) = f(x + 2 + 2) + f(x +2 +  6) \: }}

\purple{\rm :\longmapsto\:{f(x + 2) + f(x + 6) = f(x +4) + f(x + 8) \: }}

On adding these two equations, we get

 \purple{\rm{f(x) + f(x + 4) + f(x + 2) + f(x + 6) \:  \:  = }} \\  \purple{ \rm{f(x + 2) + f(x + 4) + f(x + 6) + f(x + 8)}}

 \purple{\bf\implies \:f(x) = f(x + 8)}

Hence, period of real valued function is 8.

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf T - Function & \bf Period \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx & \sf 2\pi \\ \\ \sf cosx & \sf 2\pi \\ \\ \sf sin(ax + b) & \sf  \dfrac{2\pi}{ |a| } \\ \\ \sf cos(ax + b) & \sf  \dfrac{2\pi}{ |a| }  \end{array}} \\ \end{gathered}

Answered by swanhayden7
0

Step-by-step explanation:

Correct option is

8

Given f(x)+f(x+4)=f(x+2)+f(x+6) ....(1)

Replacing x by x−2

f(x−2)+f(x+2)=f(x)+f(x+4) ....(2)

Adding (1) and (2), we get

f(x−2)=f(x+6)

Replacing x by x+2, we get

f(x)=f(x+8)

Hence, period is 8

Similar questions