Physics, asked by AestheticSky, 2 months ago

The period of revolution (t) of a planet around the sun depends upon radius (r) of the orbit, mass (m) of the sun and gravitational constant (G). Prove that t² ∝ r³

Don't spam -,- ​

Answers

Answered by SparklingBoy
281

\large \bf \clubs \:  To  \: Prove :-

The square of Time Period of a Planet revolving around the Sun is directly proportional to cube of Radius of orbit .

-----------------------

\large \bf \clubs \:  Proof:-

Here,

The Gravitational Force between Planet and the Sun provide enough Centripetal force for the Revolution of the Planet .

Hence Equating Gravitational Force and centripetal Force :

 \sf \dfrac{GMm}{ {r}^{2} }  = mr { \omega}^{2}  \\  \\   \sf\frac{GM}{ {r}^{3} }  =  { \bigg(\frac{2 \pi}{t} \bigg)}^{2}   \:  \:  \:  ( \because \:  \omega =   { \frac{2\pi}{t} )}\\  \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf  {t}^{2}  =  \frac{4 {\pi}^{2} \:  {r}^{3}  }{GM}   \propto {r}^{3}  } }}}

Hence,

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf  {t}^{2}  \propto {r}^{3} } }}}

  \red{  \underline{ \underline{\LARGE\bf \bigstar  \: Hence \:  Proved  \:  \bigstar}}}

-----------------------

\large \bf \clubs \:  Notations \: Used:-

  • t = Time Period of Revolution

  • m = mass of Planet

  • M = mass of Sun

  • r = radius of Orbit

  • ω = Angular Frequency

  • G = Gravitational Constant

-----------------------

Attachments:

rsagnik437: Awesomee ! :)
Answered by Anonymous
223

Answer:

Dimensional Analysis:

Given :

The period of revolution (t) of a planet around the sun depends upon radius (r) of the orbit, mass (m) of the sun and gravitational constant (G), mathematically :

\implies \sf [T]   \propto [r]^a [m]^b [G]^c

Adding k as dimensionaless constant :

\implies \sf [T]  = k [r]^a [m]^b [G]^c  \:  \:  \:  \:  \:... (i)\\

• DIMENSIONS:

\dag \bf \: Dimensions  \: of \:  period\:of\: revolution \:  (t) = [M^0L^0T^1] \\

\dag \bf \: Dimensions  \: of \:  radius \:  (r) = [M^0L^1T^0] \\

\dag \bf \: Dimensions  \: of \: mass \:  (m) = [M^1L^0T^0] \\

\dag \bf \: Dimensions  \: of \: gravitational \:constant \:  (G) = [M^{ - 1} L^3T^{ - 2} ] \\

\implies \sf [M^0L^0T^1]  =[M^0L^1T^0] ^a [M^1L^0T^0]^b [M^{ - 1} L^3T^{ - 2} ]^c \\

\implies \sf [M^0L^0T^1]  =[M]^{b - c} [L]^{a + 3c} [T]^{ - 2c} \\

• On comparing the powers we have:

\implies b - c = 0

\implies b  = c \:  \:  \: ....(ii)

\implies a + 3c = 0 \:  \:  \: ....(iii)

\implies  - 2c = 1

\implies  \bf c = \dfrac{ -1 }{2}  \:  \:  \: ....(iv)

Substituting value of c = -1/2 from equation (iv) to equation (ii) :

\implies b  = c  \\

\implies \bf b  =  \dfrac{ - 1}{2}

Also substitue the value of c from equation (iv) to equation (ii)

\implies a + 3c = 0

\implies a + 3 \times  \dfrac{ - 1}{2}  = 0

\implies a  -   \dfrac{  3}{2}  = 0

\implies \bf a   = \dfrac{  3}{2}

Now, Substituting the value of a, b and c in the equation (I):

\implies \sf [T]  = k [r]^{ \frac{3}{2} }[m]^{ \frac{ - 1}{2} } [G]^{ \frac{ - 1}{2} }  \\

\implies \sf [T]^{2}  = k [r]^{3 }[m]^{  - 1 } [G]^{  - 1 }  \\

\implies \sf [T]^{2}  = k [r]^{3 }

\implies \sf [T]^{2}   \propto [r]^{3 }

\implies  \underline{ \boxed{ \orange{\bf T^{2}   \propto r^{3 }}}}

Hence, Proved!


rsagnik437: Splendid ! :)
Anonymous: Thank you!
Similar questions