Math, asked by shreevij, 3 months ago

the period of sinx.sin(2pi by 3+x).sin(2 pi by 3 -x)​

Answers

Answered by shadowsabers03
9

We need to find the period of,

\longrightarrow f(x)=\sin x\sin\left(\dfrac{2\pi}{3}+x\right)\sin\left(\dfrac{2\pi}{3}-x\right)

Let us simplify it first.

Recall the following product - to - sum formulas,

  • \sin A\sin B=\dfrac{1}{2}\left[\cos(A-B)-\cos(A+B)\right]\quad\quad\dots(i)
  • \cos A\sin B=\dfrac{1}{2}\left[\sin(A+B)-\sin(A-B)\right]\quad\quad\dots(ii)

So,

\longrightarrow f(x)=\sin x\sin\left(\dfrac{2\pi}{3}+x\right)\sin\left(\dfrac{2\pi}{3}-x\right)

By (i),

\longrightarrow f(x)=\dfrac{1}{2}\sin x\left[\cos\left(2x\right)-\cos\left(\dfrac{4\pi}{3}\right)\right]

\longrightarrow f(x)=\dfrac{1}{2}\sin x\left[\cos\left(2x\right)+\dfrac{1}{2}\right]

\longrightarrow f(x)=\dfrac{1}{2}\cos\left(2x\right)\sin x+\dfrac{1}{4}\sin x

By (ii),

\longrightarrow f(x)=\dfrac{1}{4}\left[\sin\left(3x\right)-\sin x\right]+\dfrac{1}{4}\sin x

\longrightarrow f(x)=\dfrac{1}{4}\sin\left(3x\right)-\dfrac{1}{4}\sin x+\dfrac{1}{4}\sin x

\longrightarrow f(x)=\dfrac{1}{4}\sin\left(3x\right)

Now, the period of the function f(x) is a positive real number T\neq0 such that,

\longrightarrow f(T+x)=f(x)

\longrightarrow\dfrac{1}{4}\sin\left(3(T+x)\right)=\dfrac{1}{4}\sin\left(3x\right)

\longrightarrow\sin\left(3T+3x\right)=\sin\left(3x\right)

\longrightarrow\sin(3T)\cos(3x)+\cos(3T)\sin(3x)=\sin\left(3x\right)

\longrightarrow\sin(3T)\cos(3x)+\left[\cos(3T)-1\right]\sin(3x)=0

Since \sin(3x) and \cos(3x) are two distinct dependent variables wrt x, their coefficient should be zero in order to satisfy this equation, i.e.,

  • \sin(3T)=0
  • \cos(3T)=1

This implies,

\longrightarrow 3T=2n\pi,\quad n\in\mathbb{Z}

For smaller possible value of T, let n=1. Then,

\longrightarrow 3T=2\pi

\longrightarrow\underline{\underline{T=\dfrac{2\pi}{3}}}

This is the period.

Similar questions