The period of the function f(x)=sin 3x cos[3x]- cos 3xsin (3x), where [:] denotes the greatest integer function is
O 6
O 3
O 1/3
0 1/6
Answers
Answered by
1
Given :
f(x)=sin 3x cos[3x]- cos 3x sin [3x]
To find :
The greatest integer function
Solution:
f(x)=sin 3x cos[3x]- cos 3x sin [3x]
It is in the format of SinA CosB - CosA SinB = Sin (A -B )
= sin (3x - [3x])
We know that x - [x] = {x}
f(x) ⇒ sin ( {3x} )
We know that period of {3x} is 1/3.
Therefore,
Period of f(x) = 1/3
Similar questions