Math, asked by harshdeepmahi828, 7 months ago

The perpendicular AD on base BC of ∆ABC interestes BC at D, so that BD =3CD. Prove that 2AB^2=2AC^2+BC^2​

Answers

Answered by stutitilaakpal90
0

Answer:

We have,

   DB=3CD

∴ BC=BD+DC

⇒ BC=3CD+CD

⇒ BC=4CD

⇒ CD=  

4

1

​  

BC

∴  CD=  

4

1

​  

BC and BD=3CD=  

4

3

​  

BC.......(i)

Since △ABD is a right-angled triangle at D

∴ AB  

2

=AD  

2

+BD  

2

......(ii)

Similarly, △ACD is a right-angled triangle at D.

∴ AC  

2

=AD  

2

+CD  

2

.......(iii)

Subtracting equation (iii) from equation (ii) we get

     AB  

2

−AC  

2

=BD  

2

−CD  

2

 

⇒ AB  

2

−AC  

2

=(  

4

3

​  

BC)  

2

−(  

4

1

​  

BC)  

2

           [From (i) CD=  

4

1

​  

BC,BD=  

4

3

​  

BC]

⇒ AB  

2

−AC  

2

=  

16

9

​  

BC  

2

−  

16

1

​  

BC  

2

 

⇒ AB  

2

−AC  

2

=  

2

1

​  

BC  

2

 

⇒ 2(AB  

2

−AC  

2

)=BC  

2

 

⇒ 2AB  

2

=2AC  

2

+BC  

2

         [Hence proved]

Step-by-step explanation:

Answered by Anonymous
22

GIVEN:-

A ∆ABC,in which AD perpendicular to BC and BD=3CD.

TO PROVE:-

2AB²=2AC²+BC²

PROOF:-

We have :BD=3CD

∴ BC=(BD+CD)=4CD

CD=1/4 BC ______( 1 )

In ΔADB ,ADB=90⁰

∴ AB²=AD²+CD² ______(2) [By pythagorus theorum]

In ΔADC ,∠ADC=90⁰

∴ AC²=AD²+CD² ______(3) [By pythagorus theorum ]

⎆On subtracting (3) from (2) ,we get,

➨(AB²-AC²)=(BD²-CD²)

=[(3CD)²-(CD)²] [⏣ BD=3CD]

=8CD²

=8×(1/16 BC²)

=1/2 BC² [⏣Using (1) ]

∴2AB²-2AC²=BC²

2AB²=(2AC²+BC²)

Hence, proved

Attachments:
Similar questions