the perpendicular AD on the base BC of a triangle ABC intersects BC dt D so that DB=3CD. prove that 2AB²=2AC²+BC²
Answers
Answered by
0
The major Mughal emperors were:
Babur (r. 1526-30)
Humayun (r. 1530-56)
Akbar (r. 1556-1605)
Jahangir (r. 1605-27)
Shah Jahan (r. 1627-58)
Aurangzeb (r. 1658-1707)
vaibhavithakur082726:
question kya h or answer kya diye ho
Answered by
10
★Given:-
- The perpendicular AD on the base BC of a triangle ABC intersects BC at D so that DB=3CD.
★To prove:-
- 2AB²=2AC²+BC²
★Solution:-
From ΔACD,
Using pythagoras theorem,
⇒AC² = AD²+DC²
⇒ AD² = AC²-DC²------(1)
From ΔABD,
By pythagoras theorem,
⇒AB²=AD²+DB²
⇒AD² = AB²-DB²------(2)
From equation (1) &(2) ,
⇒AC²-DC²=AB²-DB²------(3)
Given that,
- DB = 3CD
And we have,
- BC = DB + CD
⇒ BC = 3CD +CD
⇒ BC = 4CD
⇒ CD = BC/4
Likewise,
⇒ BC = DB+CD
⇒ BC =DB+(BC/4)
⇒ DB = 3BC/4
Now substituting the value of CD & DB in equation (3),
⇒AC²-DC²=AB²-DB²
⇒AC²-(BC/4)²=AB²-(3BC/4)²
⇒AC²-(BC²/16) = AB²-(9BC²/16)
⇒16AC²-BC² = 16AB²-9BC²
⇒ 16AB²-16AC²=8BC²
⇒ 16(AB²-AC²) = 8BC²
⇒ 2AB²-2AC²=BC²
⇒ 2AB² =2AC²+BC²
Hence proved !
______________
Attachments:
Similar questions