The perpendicular distance from the point (5, 4) on the line
2x + y + 6 = 0 is
Answers
Answered by
2
Thnx✌️♥️~
Answered by
22
EXPLANATION.
Perpendicular distance from point (5,4).
On the line : 2x + y + 6 = 0.
As we know that,
Length of perpendicular :
⇒ P = | ax₁ + by₁ + c/√a² + b² |.
⇒ P = | 2x + y + 6/√(2)² + (1)² |.
put the value of x and y in equation, we get.
⇒ p = | 2(5) + 4 + 6/√4 + 1 |.
⇒ p = | 10 + 4 + 6/√5 |.
⇒ p = | 20/√5 |.
⇒ p = | 2√5/√5 |.
⇒ p = | 2 |.
⇒ p = 2.
MORE INFORMATION.
General equation of second degree.
ax² + 2hxy + by² + 2gx + 2fy + c = 0.
(a) = Represent a pair of two straight lines if,
(b) = Represent a circle if Δ ≠ 0, a = b, h = 0.
(c) = Represent conic section if,
⇒ Δ ≠ 0, a ≠ b,
⇒ h² > ab = Hyperbola.
⇒ h² = ab = Parabola.
⇒ h² < ab = Ellipse.
Similar questions