Math, asked by narendarrana2245, 11 months ago

The perpendicular distance of the point p(5,4) from x-axis is

Answers

Answered by ItzAditt007
9

\rule{400}4

ANSWER:-

▪︎ Given:-

  • A point p(5,4)

▪︎ To find:-

  • The perpendicular distance of p from x-axis.

\rule{400}2

▪︎ Formula Used:-

• Distance Formula:-

\tt \:  = \sqrt{  ((x \frac{}{2}  - x \frac{}{1})  {}^{2}   +(y \frac{}{2}  - y \frac{}{1}) {}^{2} )}

\rule{400}2

▪︎ Now,

  • We know that any point which lies on x-axis must have 0 as its x coordinate.

  • Also, here the y coordinate of p is 4 = y coordinate of the point on x-axis because p is the perpendicular to that point.

▪︎ Also, Here:-

\tt\leadsto \: x \frac{}{1}  = 5 \\  \\ \tt\leadsto \: x \frac{}{2}  = 0 \\  \\ \tt\leadsto \: y \frac{}{1}  = 4 \\  \\ \tt\leadsto \: y \frac{}{2}  = 4

\rule{400}2

▪︎ Therefore,

• The perpendicular distance of the point p(5,4) from x-axis,

\sf  =  \sqrt{ ((5 - 0) {}^{2}  + (4 - 4) {}^{2} )} \\  \\ \sf =  \sqrt {((5) {}^{2}  + (0) {}^{2} )} \\  \\ \sf =  \sqrt {(25 + 0)} \\  \\ \sf =  \sqrt{25}  \\  \\\sf\huge\pink {\fbox{ = 5.}}

\rule{400}2

{\small{\green{\boxed{\therefore{\bold{The\:Required\:Distance\:=\:5\:Units.}}}}}}

\rule{400}4

(See the above answer in brainly app for better results)

Answered by parijaini
1

\rule{400}4</p><p></p><p>☆ ANSWER:-</p><p></p><p>▪︎ Given:-</p><p></p><p>A point p(5,4)</p><p></p><p>▪︎ To find:-</p><p></p><p>The perpendicular distance of p from x-axis.</p><p></p><p>\rule{400}2</p><p></p><p>▪︎ Formula Used:-</p><p></p><p>• Distance Formula:-</p><p></p><p>\tt \: = \sqrt{ ((x \frac{}{2} - x \frac{}{1}) {}^{2} +(y \frac{}{2} - y \frac{}{1}) {}^{2} )}=((x2−x1)2+(y2−y1)2)</p><p></p><p>\rule{400}2</p><p></p><p>▪︎ Now,</p><p></p><p>We know that any point which lies on x-axis must have 0 as its x coordinate.</p><p></p><p>Also, here the y coordinate of p is 4 = y coordinate of the point on x-axis because p is the perpendicular to that point.</p><p></p><p>▪︎ Also, Here:-</p><p></p><p>\begin{gathered}\tt\leadsto \: x \frac{}{1} = 5 \\ \\ \tt\leadsto \: x \frac{}{2} = 0 \\ \\ \tt\leadsto \: y \frac{}{1} = 4 \\ \\ \tt\leadsto \: y \frac{}{2} = 4\end{gathered}⇝x1=5⇝x2=0⇝y1=4⇝y2=4</p><p></p><p>\rule{400}2</p><p></p><p>▪︎ Therefore,</p><p></p><p>• The perpendicular distance of the point p(5,4) from x-axis,</p><p></p><p>\begin{gathered}\sf = \sqrt{ ((5 - 0) {}^{2} + (4 - 4) {}^{2} )} \\ \\ \sf = \sqrt {((5) {}^{2} + (0) {}^{2} )} \\ \\ \sf = \sqrt {(25 + 0)} \\ \\ \sf = \sqrt{25} \\ \\\sf\huge\pink {\fbox{ = 5.}}\end{gathered}=((5−0)2+(4−4)2)=((5)2+(0)2)=(25+0)=25 = 5.</p><p></p><p>\rule{400}2</p><p></p><p>{\small{\green{\boxed{\therefore{\bold{The\:Required\:Distance\:=\:5\:Units.}}}}}}∴TheRequiredDistance=5Units.</p><p></p><p>\rule{400}4</p><p></p><p>(See the above answer in brainly app for better results)</p><p></p><p>

Similar questions