Math, asked by jainam54, 8 months ago

The perpendicular from A on side BC of a
triangle ABC intersects BC at D such that DC= 3 DB . Prove that 2AB²=2AC² + BC².

Answers

Answered by amansharma264
54

 \bf \to \:  \green{ \underline{given \div }}

=> perpendicular from A on sides BC of a

=> ∆ABC intersect BC at D

=> DC = 3DB

 \bf \to \:  \orange{ \underline{to \: prove \div }} \\  \\  \rm \to \: 2ab {}^{2} = 2ac {}^{2} + bc {}^{2}

 \bf \to \: { \underline{solution \div }}

 \rm \to \: in \:  \triangle \: acd \:  \\  \\  \rm \to \: by \: apply \: pythagorus \: theorm \\  \\  \rm \to \:  {h}^{2}  =  {p}^{2}  +  {b}^{2} \\  \\  \rm \to \:  {ac}^{2} =  {ad}^{2}  +  {cd}^{2}   \\  \\  \rm \to \:  {ad}^{2}   =  {ac}^{2}  -  {cd}^{2} ....(1) \\  \\  \rm \to \: in \triangle \: abd \\  \\  \rm \to \:  {ab}^{2}  =  {ad}^{2}  +  {db}^{2}  \\  \\  \rm \to \:  {ad}^{2}  =  {ab}^{2}  -  {db}^{2} .....(2) \\  \\  \rm \to \: from \: equation \: (1) \: and \: (2) \\  \\  \rm \to \:  {ac}^{2}  -  {cd}^{2}  =  {ab}^{2}  -  {db}^{2}.....(3)  \\  \\  \rm \to \: 3dc \:  = db \\  \\   \rm \to \: let \: bc \:  = x \\  \\  \rm \to \: cd \:  +  \: db \:  = x \\  \\  \rm \to \: cd  + 3cd = x \\  \\  \rm \to \: cd \:  =  \frac{x}{4}  \\  \\  \rm \to \: cd \:  =  \frac{bc}{4}  \\  \\  \rm \to \:put \: the \: value \: in \: equation \: (3) \\  \\  \rm \to \: (ac) {}^{2}  - ( \frac{bc}{4}  ) {}^{2}  = (ab) {}^{2}  - (3dc) {}^{2}  \\  \\  \rm \to \: (ac) {}^{2}  -  \frac{(bc) {}^{2} }{16}  = (ab) {}^{2}  - 3 (\frac{bc}{4}  ) {}^{2}  \\  \\  \rm \to \: (ac) {}^{2} -  \frac{(bc) {}^{2} }{16} = (ab) {}^{2} -  \frac{9bc {}^{2} }{16}  \\  \\  \rm \to \: (ac) {}^{2} - (ab) {}^{2} =  -    \frac{9bc {}^{2} }{16}  +  \frac{(bc) {}^{2} }{16}  \\  \\  \rm \to \: (ac) {}^{2} - (ab) {}^{2}  =  \frac{bc {}^{2} }{2} \\  \\  \rm \to \:   2ab {}^{2}    = 2ac {}^{2}  + bc {}^{2}

Attachments:

amitkumar44481: Fantastic :-)
Anonymous: Nicee!
Answered by Anonymous
13

 \tt GIVEN:-

 \tt  \triangle \:  ABC \:  is \: a \: triangle\\  \tt AD \perp  BC  \\  \tt D C = 3DB

 \tt PROVE:-

 \tt  2AB {}^{2}  = 2 AC  {}^{2} +  BC {}^{2}

 \tt SOLUTION:-

 \tt in \triangle \:  ADB \: and \:   \triangle ADC

 \tt AB  {}^{2}  = AD {}^{2}  + BD {}^{2} ....(i) \:  \:  \:  \:  \:  \: (by \: pythogoras \: theorem) \\  \tt AC {}^{2}  = AD {}^{2}  + DC {}^{2} ......(ii)

 \tt sub \: (ii) \: from \: (i)

 \tt AB  {}^{2}   -  AC {}^{2}   = BD {}^{2} -   DC {}^{2}

 \tt    9CD {}^{2}  - CD {}^{2}  \:  \: ( \therefore DC  = 3DB )

 \tt    9CD {}^{2}   =   (\frac{BC}{4} {)}^{2}

 \tt  \therefore AB  {}^{2} -AC {}^{2} = \frac{   {BC}^{2} }{2}

 \tt  =  >  2( AB  {}^{2} -AC {}^{2} )=    {BC}^{2}

 \tt  =  >  2 AB  {}^{2} -  2AC {}^{2} =    {BC}^{2}

 \tt  =  >  2 AB  {}^{2}  = 2AC {}^{2}  +     {BC}^{2}

Attachments:
Similar questions