The person will be considered as genius who will solve it
Attachments:
Answers
Answered by
1
Multiplying (1+cosA) with both numerator and denominator,
sinA + sinAcosA/ (1+cosA) (1-cosA)
sinA + sinAcosA/ 1-cos^2 A
sinA + sinAcosA/ sin^2 A
sinA(1+cosA)/sinAsinA
= 1/sinA + cosA/sinA
=cosecA + cotA
sinA + sinAcosA/ (1+cosA) (1-cosA)
sinA + sinAcosA/ 1-cos^2 A
sinA + sinAcosA/ sin^2 A
sinA(1+cosA)/sinAsinA
= 1/sinA + cosA/sinA
=cosecA + cotA
Answered by
2
sin a
--------------------- = cosec a + cot a
1 - cos a
By multiplying the numerator and denominator of L.H.S by ( 1 + cos a ).
( sin a ) ( 1 + cos a )
---------------------------------- = cosec a + cot a
( 1 - cos a ) ( 1 + cos a )
sin a + sin a x cos a
------------------------------- = cosec a + cot a
1 - cos^2 a
sin a + sin a x cos a
---------------------------- = cosec a + cot a { ( 1 - cos^2 a = sin^2 a }
sin^2 a
sin a + sin a x cos a
-------- ----------------- = cosec a + cot a
sin^2 a sin^2 a
1 + cos a
------ --------- = cosec a + cot a
sin a sin a
cosec a + cot a = cosec a + cot a
[ { 1/sin a = cosec a } , { ( cos a / sin a ) = cot a } ]
Proved.
--------------------- = cosec a + cot a
1 - cos a
By multiplying the numerator and denominator of L.H.S by ( 1 + cos a ).
( sin a ) ( 1 + cos a )
---------------------------------- = cosec a + cot a
( 1 - cos a ) ( 1 + cos a )
sin a + sin a x cos a
------------------------------- = cosec a + cot a
1 - cos^2 a
sin a + sin a x cos a
---------------------------- = cosec a + cot a { ( 1 - cos^2 a = sin^2 a }
sin^2 a
sin a + sin a x cos a
-------- ----------------- = cosec a + cot a
sin^2 a sin^2 a
1 + cos a
------ --------- = cosec a + cot a
sin a sin a
cosec a + cot a = cosec a + cot a
[ { 1/sin a = cosec a } , { ( cos a / sin a ) = cot a } ]
Proved.
Ashutoshsharma1111:
plz.. mark as brainiest
Similar questions