Math, asked by Mister360, 3 months ago

The pillars of a temple are cylindrical shaped. if each pillar has a circular base of radius 30 cm and height 10 m, how much concrete mixture would be required to build 14 such pillars?​

Answers

Answered by Anonymous
17

Given:-

  • Pillars of a temple are cylindrical shaped
  • Radius of base of each pillar = 30
  • Height of each pillar = 10 m

To Find:-

  • How much concrete mixture would be required to build 14 such pillars.

Solution:-

We know,

To build a pillar we require the amount of concrete required. Hence we need to find volume of the pillar here.

We already have:-

  • \bf{\green{Radius\:of\:base = 30\:cm}}
  • \bf{\red{Height = 10\:m = 1000\:cm}[\because\:1\:m = 100\:cm]}

We know,

  • \dag\boxed{\underline{\pink{\bf{Volume\:of\:Cylinder = \pi r^2h\:sq.units}}}}

Putting all the values, we get:-

\sf{Volume\:of\:each\:pillar = \dfrac{22}{7}\times (30)^2\times 1000}

\sf{Volume\:of\:1\:pillar = \dfrac{22000\times 900}{7}}

=\sf{Volume\:of\:1\:pillar = \dfrac{19800000}{7}}

\dag{\boxed{\underline{\bf{\therefore\:The\:Volume\:of\:one\:pillar\:is\:\dfrac{19800000}{7}cm^3}}}}

Now,

\sf{\because\:Volume\:of\:1\:pillar = \dfrac{19800000}{7}\:cm^3}

\sf{\therefore\:Volume\:of\:14\:pillars = 14\times \dfrac{19800000}{7}}

 = \sf{Volume\:of\:14\:pillars = 2\times19800000 = 39600000\:cm^3}

\boxed{\underline{\blue{\bf{\therefore\:The\:required\:Concrete\:mixture\:is\:14\:\:pillars\:is\:3960000\:cm^3\:or\:39.6\:m^3}}}}

______________________________________

Answered by Anonymous
113

Answer:

 \large \underline{\sf\pmb{Given}}

  • ➠ Radius of the base of a cylinder = 30 cm
  • ➠ Height of Cylinder = 10 m

 \large \underline{{ \sf \pmb{To Find}}}

  • ➠ How much concrete mixture would be required to build 14 such pillars?

 \large\underline{\sf \pmb{Using \: Formula }}

  \circ\underline{ \boxed{ \sf{Volume  \: of \:  Cylinder  \: Piller = {\pi} {r}^{2}h }}}

 \large \underline{ \sf \pmb{Solution}}

 \bigstar  \: \underline\frak{Firstly \:  Converting  \: Height \:  (30cm)  \: into  \: m}

As we know that

 :  \implies \sf{1 \: cm =  \dfrac{1}{100}  \:  m}

So,

 :  \implies \sf{30 \: c m =  \bigg( \dfrac{30}{100} \bigg)m}

 :  \implies \bf \red{0.3 \:  cm}

 \bigstar \:  \underline\frak{Now,Finding  \: the \:  volume \:  of \:  a \:  pillar}

{ : \implies \sf{Volume  \: of \:  Cylinder  \: Pillar = {\pi} {r}^{2}h }}

  • Substituting the values

{ :  \implies\sf{Volume_{(cylinder \: pillar)}} =  \dfrac{22}{7} \times {0.3}^{2}  \times 10}

{ :  \implies\sf{Volume_{(cylinder \: pillar)}} =  \dfrac{22}{7}  \times (0.3 \times 0.3) \times 10}

{ :  \implies\sf{Volume_{(cylinder \: pillar)}} =  \dfrac{22}{7}  \times 0.09\times 10}

{ :  \implies\sf{Volume_{(cylinder \: pillar)}} =  \dfrac{22}{7}  \times 0.9}

{ :  \implies\bf {\red{Volume_{(cylinder \: pillar)} =  \dfrac{19.8}{7}  }}}

 \circ \underline{ \boxed {\sf \purple{Volume \:  of \:  a \:  Cylinder \:  Piller \:  is \:  19.8/7 m³}}}

 \bigstar \:  \underline\frak{Now,Finding  \: the \:  volume \:  of \:  14\:  pillers.}

 {:  \implies\sf{Volume  \: of  \: 14 \:  Piller = 14  \times  Volume \:  of  \: a  \: pillar}}

  • Substituting the values

{:  \implies\sf{Volume= 14  \times  \dfrac{19.8}{7} }}

{:  \implies\sf{Volume=  \cancel{14}  \times  \dfrac{19.8}{ \cancel{7} }}}

{:  \implies\sf{Volume= 2  \times 19.8} \: {m}^{3} }

{:  \implies\bf \red{Volume=39.6 \:  {cm}^{3} } }

   \circ\underline{\boxed {\sf \purple{Volume \:  of  \: 14  \: pillar  \: is \: 39.6 \:  {m}^{3}}}}

  • Henceforth,14 pillars would need 39.6 m³ of concrete mixture.
Similar questions