Math, asked by gowthamifashiondesig, 2 months ago

The pillars of a temple are cylindrically shaped. If each pillar has a circular base
of radius 1m and height 10m, find its volume.​

Answers

Answered by ItzAditt007
104

Answer:-

The Volume of each pillar is 31.4 m³.

Explanation:-

Given:-

  • Radius of the pillar = 1m.
  • Height of the pillar = 10m.

To Find:-

  • The Volume Of The Pillar.

Formula Used:-

\large\bf\mapsto V = \pi r^2 h.

Where,

  • V = Volume.
  • r = radius of the pillar = 1m.
  • \tt\pi = 3.14.
  • h = height = 10m.

Solution:-

By Putting The Values In The Formula:-

\\ \tt\mapsto V = \pi r^2 h.

\\ \tt\mapsto V =3.14 \times (1m) {}^{2} \times 10m.

\\ \tt\mapsto V =3.14 \times 1m {}^{2} \times 10m.

\\  \large\bf\mapsto \boxed{ \bf V =31.4 {m}^{3}}

Therefore The Required Volume of The Pillar Is 31.4 m³.

Answered by BrainlyRish
43

Given : Base Radius of Pillar of temple is 1 m & Height of the Pillar is 10 m .

Exigency To Find : Volume of Pillar .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for Volume of Cylinder is given by :

\dag\:\:\boxed{\sf{ Volume _{(Cylinder)} =\bigg(  \pi r^2 h \bigg) }}\\\\

Where,

  • r is the Radius of Pillar , h is the Height of pillar & \pi = \dfrac{22}{7}\:or\:3.14

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad :\implies \sf { Volume = \dfrac{22}{7} \times (1)^2 \times 10 }\\\\\\ :\implies \sf { Volume = \dfrac{22}{7} \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14 \times 1 \times 10 }\\\\\\ :\implies \sf { Volume = 3.14  \times 10 }\\\\\\ \underline {\boxed{\pink{ \frak {  Volume = 31.4\: m^2}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\:The\:Volume \: \:of\:Pillar \:is\:\bf{31.4\: m^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed{\begin{array}{cc}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions