Math, asked by paplukaaloo8112, 9 months ago

The point of contact of the line 2x+under root 5y-9=0 with the circle x~2+y`2=9 is

Answers

Answered by adityasrivastava6578
0

Answer:

9x+y-28=0

⇒y= -9x+28

put this value in circle equation

after solving

x=333

by putting this value in eq

y= 370

so answer is (333,370)

Step-by-step explanation:

Answered by swethassynergy
0

The point of contact of the line 2x+\sqrt{5} y-9=0 with the circle x^{2} +y^{2} =9 is ( 7,-\sqrt{5} ).

Step-by-step explanation:

Given:

The line 2x+\sqrt{5} y-9=0 make contact with the circle x^{2} +y^{2} =9.

To Find:

The point of contact of the line 2x+\sqrt{5} y-9=0 with the circle x^{2} +y^{2} =9

Solution:

As given-The line 2x+\sqrt{5} y-9=0 make contact with the circle x^{2} +y^{2} =9.

To find out  point of contact (x,y )  for this  it is required to solve both equations 2x+\sqrt{5} y-9=0 and  x^{2} +y^{2} =9.

2x+\sqrt{5} y-9=0  ------ equation no.01.

x^{2} +y^{2} =9 ------------ equation no.02.±

Putting the value of x from equation no.01 in equation no.02. We get.

(\frac{9-\sqrt{5}y }{2} )^{2} +y^{2} =9

\frac{(9-\sqrt{5} y )^{2} }{4} +y^{2} =9

(9-\sqrt{5} y )^{2} } +4y^{2} =36

9^{2} +(\sqrt{5} y)^{2}+2\times\ 9\times\sqrt{5}  +4y^{2} =36

81+5y^{2} +18\sqrt{5} y +4y^{2} =36

9y^{2} +18\sqrt{5} y+45=0

y^{2} +2\sqrt{5} y+5=0

y=\frac{-2\sqrt{5}\± \sqrt{(2\sqrt{5} )^{2}-4\times 1\times5}  }{2\times1}

   =\frac{-2\sqrt{5}\± \sqrt{20-20}  }{2}

  =\frac{-2\sqrt{5}\± \sqrt{0}  }{2}

 = -\sqrt{5}

Putting the value of y in equation no.01,We get.

 2x+\sqrt{5} (-\sqrt{5} )-9=0

2x-5-9=0

2x=14\\x=7

Thus,the point of contact of the line 2x+\sqrt{5} y-9=0 with the circle x^{2} +y^{2} =9 is ( 7,-\sqrt{5} ).

PROJECT CODE#SPJ3

Similar questions