Math, asked by harshtongar, 10 months ago

the point of intersection of line 7 x minus 15 Y minus 2 is equals to zero and 6 X + 12 Y - 18 is equals to zero is​

Answers

Answered by wifilethbridge
4

Answer:

\frac{49}{29},\frac{19}{29}

Step-by-step explanation:

6x + 12y - 18 = 0 --A

7x-15y-2=0 --B

Substitute the value of x from A in B

7(\frac{18-12y}{6})-15y-2=0

\frac{126-84y}{6})-15y-2=0

y=\frac{19}{29}

Substitute the value of y in B

7x-15(\frac{19}{29})-2=0

x=\frac{49}{29}

Hence the points of intersection are \frac{49}{29},\frac{19}{29}

Answered by pinquancaro
1

The point of intersection is \frac{49}{29},\frac{19}{29}

Step-by-step explanation:

The equation given are

7x-15y-2=0

7x-15y=2 ......(1)

and 6x + 12y - 18 = 0

6x + 12y= 18 ......(2)

Solving (1) and (2) by substitution method,

Substitute x from (1) in (2),

From (1), x=\frac{2+15y}{7} .....(3)

6(\frac{2+15y}{7})+ 12y= 18

\frac{12+90y}{7}+ 12y= 18

\frac{12+90y+84y}{7}= 18

174y+12=126

174y=114

y=\frac{114}{174}

y=\frac{19}{29}

Substitute the value of y in (3),

x=\frac{2+15(\frac{19}{29})}{7}

x=\frac{2+\frac{285}{29}}{7}

x=\frac{\frac{58+285}{29}}{7}

x=\frac{\frac{343}{29}}{7}

x=\frac{343}{29\times 7}

x=\frac{343}{203}

x=\frac{49}{29}

The point of intersection is \frac{49}{29},\frac{19}{29}

#Learn More

System of equations

1) https://brainly.in/question/8852267, Answered by Anshikaverma29

Similar questions