Math, asked by tirumaniranavaditya, 9 months ago

The point on the line 3x + 4y = 5
which is equidistant from (1,2) and
(3,4) is​

Answers

Answered by Rohith200422
6

Question:

The point on the line 3x + 4y = 5 which is equidistant from (1,2) and (3,4) is.

To find:

★ To find the points .

Answer:

The  \: points  \: are  \:  \underline{ \:  \sf \pink{ ( \frac{15}{7} , \frac{ - 5}{14})}  \: }

Given:

★ An equation of a straight line is given, 3x + 4y = 5.

It also can be written as, 3x + 4y - 5 = 0.

★ Two points are given, ( 1,2 ) and (3,4).

Step-by-step explanation:

Let the point on the line 3x + 4y - 5 = 0 equidistant from points A ( 1, 2 ) and B ( 3 , 4 ) be C ( x , y )

 3x + 4y - 5 = 0 ---> (1)

We know that, Distance formula

 \boxed{d =  \sqrt{ ({x _{2} - x _{1}  )}^{2} +  {(y _{2} - y _{1} ) }^{2}  } }

 \sqrt{ {(x - 1)}^{2}  +  {(y - 2)}^{2} }  =  \sqrt{ {(x - 3)}^{2} +  {(y - 4)}^{2} }

Square root get cancelled.

 \sf{(x - 1)}^{2}  +  {(y - 2)}^{2}   = {(x - 3)}^{2} +  {(y - 4)}^{2}

Now implying, ( a - b ) ² formula.

 \sf  {x}^{2}  - 2x + 1 +  {y}^{2}  - 4y + 4 =  {x}^{2}  - 6x + 9 +  {y}^{2}   - 8y + 16

 \sf  {x}^{2}  +  {y}^{2}  - 2x - 4y + 5 =  {x}^{2}  +  {y}^{2}  - 6x - 8y + 25

 \sf  \bold{{x}^{2}  +  {y}^{2}}  - 2x - 4y + 5  \bold{ - {x}^{2}   -  {y}^{2}}  + 6x  +  8y  -  25 = 0

  \sf \boxed{4x + 4y - 20= 0}---> (2)

Now , subtracting ( 1 ) and ( 2 )

3x + 4y - 5 = 0

4x + 4y - 20 = 0

( - ) ( - ) ( + )

_____________

7x - 15 = 0

_____________

 \hookrightarrow\sf 7x = 15

 \hookrightarrow \sf \boxed{x = \frac{15}{7} }

Now substituting the value of x in ( 1 )

\mapsto \sf3 \times \frac{15}{7}  +  4y - 5 = 0

\mapsto\sf 45 + 28y - 35 = 0

\mapsto\sf 28y + 10 = 0

\mapsto \sf28y =  - 10

\mapsto \sf14y =  - 5

\mapsto \sf \boxed{y =  \frac{ - 5}{14} }

 \thereforeThe points are   \bold{(\frac{15}{7} , \frac{ - 5}{14}) }

Formula used:

 \bigstar d =  \sqrt{ ({x _{2} - x _{1} ) }^{2} +  {(y _{2} - y _{1} ) }^{2}  }

 \bigstar  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}

Similar questions