Math, asked by ayeshanaz11, 1 month ago

The point on the x-axis which is equidistant from P(-2, 9) and Q (2,-5) is : (a) (0,7) (b) (-7,0) (c) (7,0) (d) (7, -7)​

Answers

Answered by Anonymous
5

Answer:

  • Option (b) is correct

Step-by-step explanation:

In this question, we are asked to find a point on x-axis which is equidistant from the points P(-2, 9) and Q(2, -5). Inorder to solve this question, we will use distance formula and the concept of general coordinate on x axis.

Any point on x axis is given by (x, 0).

Let's assume that the required coordinate be K(x, 0).

We are aware about the distance formula :

  • \sf Distance\: formula= \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

‎ ‎ ‎

Now,

 \small{   \sf\implies Distance  \: of  \: PK = Distance  \: of \:  QK}

 \small{  \implies\sqrt{(9 - 0)^{2} + ( - 2 - x)^{2}  }  =  \sqrt{( - 5 - 0)^{2}  + (2 - x)^{2} } }

 \small{  \implies\sqrt{81 + ( - 2 - x)^{2}  }  =  \sqrt{25+ (2 - x)^{2} } }

 \small{  \implies81 + ( - 2 - x)^{2}  = 25+ (2 - x)^{2} }

‎ ‎ ‎

Now expanding using algebraic identity :-

  • (A + B)² = A² + B² + 2AB
  • (A - B)² = A² + B² - 2AB

‎ ‎ ‎

 \small{  \implies81 + ( - 2)^{2} +  {x}^{2}   -2( - 2)( x) = 25+  {2}^{2}  +  {x}^{2}  - 4x }

 \small{  \implies81 + 4 +  {x}^{2}   + 4x= 25+ 4 +  {x}^{2}  - 4x }

 \small{  \implies85 + 4x= 29  - 4x }

 \small{  \implies 4x +  4x= 29 - 85  }

 \small{  \implies 8x= - 56}

 \small{  \implies x= -7}

Hence the required coordinates are (-7, 0).

Option (b) is correct

Similar questions