Math, asked by proudsikhi, 1 day ago

the point on the y axis which is equidistant from the point ( 3 , 4 ) and ( -6 , 2 )​

Answers

Answered by anindyaadhikari13
8

\textsf{\large{\underline{Solution}:}}

As the point is on y axis, therefore x = 0. So, let us assume that the point is O(0, a)

Given Points: A(3, 4) and B(-6, 2)

As the point is equidistant from A and B, therefore:

 \rm \longrightarrow OA=OB

 \rm \longrightarrow OA^{2} =OB^{2}

Calculating OA:

 \rm \longrightarrow OA =  \sqrt{ {(3 - 0)}^{2} +  {(4 - a)}^{2}  }

 \rm \longrightarrow OA^{2} =9 +16 +  {a}^{2}  - 8a

 \rm \longrightarrow OA^{2} = {a}^{2}  - 8a + 25

Calculating OB:

 \rm \longrightarrow OB =  \sqrt{ {(0  + 6)}^{2} +  {(2 - a)}^{2}  }

 \rm \longrightarrow OB =  \sqrt{ 36+ 4 - 4a +  {a}^{2}}

 \rm \longrightarrow OB =  \sqrt{ {a}^{2} - 4a + 40}

 \rm \longrightarrow OB^{2}  =  {a}^{2} - 4a + 40

Now:

 \rm \longrightarrow OA^{2} =OB^{2}

 \rm \longrightarrow  {a}^{2} - 8a + 25 =  {a}^{2}  - 4a + 40

 \rm \longrightarrow   - 8a + 25 =   - 4a + 40

 \rm \longrightarrow   - 8a + 4a =  40 - 25

 \rm \longrightarrow   - 4a =15

 \rm \longrightarrow a =  \dfrac{ - 15}{4}

Therefore, the coordinate of the point O is – (0, -15/4)

\textsf{\large{\underline{Learn More}:}}

1. Section formula.

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the point which divides PQ internally in the ratio m₁ : m₂. Then, the coordinates of R will be:

\rm\longrightarrow R = \bigg(\dfrac{m_{1}x_{2}+m_{2}x_{1}}{m_{1}+m_{2}}, \dfrac{m_{1}y_{2}+m_{2}y_{1}}{m_{1}+m_{2}}\bigg)

2. Mid-point formula.

Let P(x₁, y₁) and Q(x₂, y₂) be two points in the coordinate plane and R(x, y) be the mid-point of PQ. Then, the coordinates of R will be:

\rm\longrightarrow R = \bigg(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\bigg)

3. Centroid of a triangle formula.

Centroid of a triangle is the point where the medians of the triangle meet.

Let A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) be the vertices of a triangle. Let R(x, y) be the centroid of the triangle. Then, the coordinates of R will be:

\rm\longrightarrow R = \bigg(\dfrac{x_{1}+x_{2}+x_{3}}{3}, \dfrac{y_{1}+y_{2}+y_{3}}{3}\bigg)

Attachments:

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions