Math, asked by siscan, 1 month ago

The point P(-4, 1) divides the line segment joining the points A(2, -2) and B in the ratio 3:5. Find the co-ordinates of point B.
plz give the correct answer ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

↝ The point P(-4, 1) divides the line segment joining the points A(2, -2) and B in the ratio 3:5.

↝ Let assume that coordinates of B be (x, y).

We know,

Section Formula,

\rm :\longmapsto\:\:( x, y) =  \bigg(\dfrac{mx_2  +  nx_1}{m  +  n}  , \dfrac{my_2  +  ny_1}{m  +  n} \bigg )

So, on substituting the values, we get

\rm :\longmapsto\:\:(  - 4, 1) =  \bigg(\dfrac{3x + 10}{3 + 5}  , \dfrac{3y - 10}{3 + 5} \bigg )

\rm :\longmapsto\:\:(  - 4, 1) =  \bigg(\dfrac{3x + 10}{8}  , \dfrac{3y - 10}{8} \bigg )

\rm :\longmapsto\:\dfrac{3x + 10}{8}  = - 4  \: and \: \dfrac{3y - 10}{8}  = 1

\rm :\longmapsto\:3x + 10 =  - 32 \:  \: and \:  \: 3y - 10 = 8

\rm :\longmapsto\:3x=  - 42 \:  \: and \:  \: 3y = 18

\rm :\longmapsto\:x=  - 14 \:  \: and \:  \: y = 6

Hence, Coordinates of B is ( - 14, 6 ).

Additional Information :-

1. Distance Formula

{\underline{\boxed{\rm{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

2. Midpoint Formula

{\underline{\boxed{\rm{\quad \dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2} \quad}}}}

3. Centroid of a triangle

{\underline{\boxed{\rm{\quad  \bigg(\dfrac{x_1 + x_2 + x_3}{3} \; ,\; \dfrac{y_1 + y_2 + y_3}{3}  \bigg)\quad}}}}

4. Area of triangle

 \boxed{\rm\ Area =\dfrac{1}{2}  [x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]}

5. Conditions for 3 points to be collinear

 \boxed{\rm\   x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) = 0}

Similar questions