Math, asked by Devika1995, 1 year ago

The point represented by the complex number 2-i

Answers

Answered by harshithchinnup7iv1c
1

Answer:

..................(2,-1)

Answered by rahul123437
3

Given Question :

The point represented by the complex number 2 - i is rotated about origin through an angle $\frac{\pi}{2} in the clockwise direction, the new position of point is ?

To find : The new position of point

Given : 2 - i

Here,            Z = 2 - i              \theta = - \frac{\pi}{2}    

                    $Z^{\prime}=Z \cdot e^{+i \theta}                                          

             Z^{\prime}=Z \cdot(\cos \theta+i \sin \theta)   ---> ( Where, $e^{+i \theta}  )

Applying "Z" and "\theta" values, in we get

             Z^{\prime}=Z \cdot(\cos \theta+i \sin \theta)

             Z^{\prime}=( 2 - i) \cdot(\cos (-\frac{\pi }{2})  +i \sin (-\frac{\pi }{2})  )

Hence, the value of   cos (-\frac{\pi }{2} ) = 0  ;   sin (-\frac{\pi }{2} ) = -1  

             Z^{\prime}=( 2 - i) \cdot(0  +i \ (-1)  )

             Z^{\prime}=( 2 - i) \cdoti \ (-i)

             Z' = (-2i - i^{2} )

             Z' = (-2i - (-1) ) ---> ( i^2 = -1 )

             Z' = (-2i +1 )

             Z' = - (2i - 1 ) = - 1 -2i.

             Z' = -1 - 2i.        

To learn more...

brainly.in/question/6646899        

Similar questions