Math, asked by amaraarvind2004, 8 months ago

The point to which the origin should be shifted in order to remove the x and y terms in the equation
14x2 4xy + 11y2 – 36x + 48y + 41 = 0 is (h,k) then the value of h-k is​

Answers

Answered by anjumanyasmin
1

the transformed equation is

14(x′ +h)  2  −4(x ′ +h)(y ′ +k)+11(y ′  +k)  2  −36(x ′ +h)+48(y ′  +k)+41=0

14x′ 2  +28x′ h+14h  2  −4x′  y′  −4x′  k−4y′  h−4hk+11y′ 2 +11k  2 +22y′  k−36x′  −36h+48y  ′  +48k+41=0

14x′ 2  +11y′ 2  +x′  (28h−4k−36)+y′  (−4h+22k+48) +(14h  2  −4hk−36h+48k+41)−4x′  y′ =0

In order to remove the first degree term, we must have

28h−4k−36=0 and −4h+22k+48=0

∴h=1 and k=−2

Therefore the answer is (1,-2).

Answered by sadafsiddqui
1

the transformed equation is

14(x′ +h)  2  −4(x ′ +h)(y ′ +k)+11(y ′  +k)  2  −36(x ′ +h)+48(y ′  +k)+41=0

14x′ 2  +28x′ h+14h  2  −4x′  y′  −4x′  k−4y′  h−4hk+11y′ 2 +11k  2 +22y′  k−36x′  −36h+48y  ′  +48k+41=0

14x′ 2  +11y′ 2  +x′  (28h−4k−36)+y′  (−4h+22k+48) +(14h  2  −4hk−36h+48k+41)−4x′  y′ =0

In order to remove the first degree term, we must have

28h−4k−36=0 and −4h+22k+48=0

∴h=1 and k=−2

Hence , the answer  is (1,-2).

Similar questions