Math, asked by nisarg432005, 10 months ago

The point which divides the join of the points (7, -6) and (3, 4) in the ratio 1:2
lies in
the ......... quadrant.​

Answers

Answered by Anonymous
8

SOLUTION:-

Given points:

⚫A= (7,-6)

⚫B =(3,4)

Therefore,

If a point P(x,y) divides the line AB joining the points A(x1,y1) & B(x2,y2) in the ratio m:n internally, then coordinates of point P are given by

x =  \frac{mx2 + nx1}{m + n}   \: ,\: y =  \frac{my2 + ny1}{m + n}  \\  \\  =  >  \frac{1 \times 3 + 2 \times 7}{1 + 2} , \:  \frac{1 \times 4 + 2 \times  (- 6)}{1 + 2}  \\  \\  =  >  \frac{3 + 14}{3} , \:  \frac{4 + ( - 12)}{3}  \\  \\  =  >  (\frac{17}{3} , \:  \frac{4 - 12}{3} ) \\  \\  =  >(  \frac{17}{3}  ,  \frac{ - 8}{3} )

Hope it helps ☺️

Similar questions