Math, asked by swashanker21, 10 months ago


The point which lies on y-axis at a distance of 6 units from the point (0, 1)

Answers

Answered by Anonymous
4

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ Distance between two points= 6unit's
  • ✦ one cordinate is given =(0,1)

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦we need to find another cordinate on y axis.

\huge{\underline{\bf{\red{Solution:-}}}}

Let the required points be PA p(x ,y)

Then,

PA = 6 unit's

  • P(0,1) , A(x ,0)

 \mapsto  \rm\:PA =  \sqrt{(y_2-y_1)^{2} } \: \\  \\ \mapsto  \rm\:6=\sqrt{(y-1)^2}  \\  \\ \mapsto  \rm\ 6=(y-1) \\  \\\mapsto  \rm\  \:  \: 6+1=y   \\  \\ \mapsto  \rm\:y=7 \\  \\

Hence,

co - ordinates on y axis are p(7,0)

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Co-ordinates \ of \ point \ are \ (0,-5)}

\sf{or \ (0,7)}

\sf\orange{Given:}

\sf{\implies{The \ point \ lies \ on \ y-axis}}

\sf{\implies{The \ point \ is \ at \ distance \ of }}

\sf{6 \ units \ from \ the \ point \ (0,1)}

\sf\pink{To \ find:}

\sf{Co-ordinates \ of \ point.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ point \ with \ co-ordinates \ (0,1)}

\sf{be \ A \ and \ point \ at \ distance \ of}

\sf{6 \ units \ be \ B \ (x2,y2)}

\sf{Both \ points \ lie \ on \ y-axis }

\sf{Hence, \ their \ x-co-ordinate \ will \ be \ zero.}

\sf{Case(I)}

\sf{d(A,B)=\sqrt{(y1-y2)^{2}}}

\sf{6=\sqrt{(1-y2)^{2}}}

\sf{(1-y2)=6}

\sf{y2=1-6}

\sf{y2=-5}

\sf{Case(II)}

\sf{d(B,A)=\sqrt{(y2-1)^{2}}}

\sf{6=y2-1}

\sf{y2=6+1}

\sf{y2=7}

\sf\purple{\tt{\therefore{Co-ordinates \ of \ point \ are \ (0,-5) }}}

\sf\purple{\tt{or \ (0,7)}}

Similar questions