Social Sciences, asked by punjabiniraj10, 9 months ago

the points(1, 2), b(5, 4) c(3, 8) d(-1, 6) are the vertices of a quadrilateral using distance formula identify the type​

Answers

Answered by SarcasticL0ve
5

GivEn:

  • A (1,2)
  • B (5,4)
  • C (3,8)
  • D (-1,6)

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Using distance Formula identify which type of quadrilateral is it?

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

\bf Here = \begin{cases} & \text{A (1,2) }  \\ & \text{B (5,4)}  \\ & \text{C (3,8)} \\ & \text{D (-1,6)}\end{cases}

⠀⠀⠀⠀⠀⠀⠀

As we know that,

\star\;{\boxed{\sf{\purple{Distance\;Formula = \sqrt{( x_2 - x_1 )^2 + ( y_2 - y_1 )^2}}}}}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Now,\;Using\;Distance\;Formula,\; distance\;of\;sides\;are\;:}}}

⠀⠀⠀⠀⠀⠀⠀

Distance AB :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{( 5 - 1)^2 + (4 - 2)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(4)^2 + (2)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{16 + 4}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{20}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

Distance BC :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(3 - 5)^2 + (8 - 4)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(-2)^2 + (4)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{4 + 16}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{20}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

Distance CD :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(-1 -3)^2 + (6 - 8)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(- 4)^2 + (- 2)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{16 + 4}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

Distance DA :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(1 + 1)^2 + (2 - 6)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(2)^2 + (-4)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{4 + 16}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

\therefore AB = BC = CD = DA

⠀⠀⠀⠀⠀⠀⠀

All sides are equal.

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

{\underline{\sf{\bigstar\;Now,\;Using\;Distance\;Formula,\; distance\;of\; diagonal\;are\;:}}}

⠀⠀⠀⠀⠀⠀⠀

Distance AC :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(3 - 1)^2 + (6 - 2)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(2)^2 + (4)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{4 + 16}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \blue{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

━━━━━━━━━━━━━━━

Distance BD :-

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{( - 1 + 5)^2 + (6 - 4)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{(- 4)^2 + (2)^2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \sqrt{ 16 + 4}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \blue{2 \sqrt{5}}

⠀⠀⠀⠀⠀⠀⠀

\therefore AC = BD

⠀⠀⠀⠀⠀⠀⠀

Both Diagonal are equal.

⠀⠀⠀⠀

━━━━━━━━━━━━━━━⠀⠀⠀

★ Hence, We can see that all sides and diagonal are of equal distance.

⠀⠀⠀⠀⠀⠀⠀

\therefore Point A, B, C and D are vertices of a square.

Attachments:
Similar questions