Math, asked by gfrrrbbhhh, 2 months ago

The points (2, 3) (x, y) and (3, -2) are verticies of a triangle. If origin is

the centroid of this triangle then find (x, y)​

Answers

Answered by SachinGupta01
31

\bf \underline{ \underline{\maltese\:Given} }

 \sf The \:  points  \: (2, 3)  \: (x, y)  \: and  \: (3, -2)  \: are  \: verticies \:  of  \: a \:  triangle.

 \sf Origin \:  is \:  centroid  \: of   \: triangle.

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies   Value  \: of  \: (x, y) =  \: ?

\bf \underline{ \underline{\maltese\:Solution} }

 \sf \underline{As  \: we \:  know \:  that},

 \sf \implies   Points  \: of \:  origin \:  is \:  always \:  (0,0)

 \bf \underline{Now},

 \underline{ \boxed{ \sf  Centroid \:  formula = (0,0) =  \dfrac{(x_1 + x_2 + x_3)}{3}  \: , \:  \dfrac{(y_1 + y_2 + y_3)}{3}}}

 \bf \underline{Where},

  \sf \implies x_1 = 2

\sf \implies x_2 = x

\sf \implies x_3 = 3

\sf \implies y_1 = 3

\sf \implies y_2 = y

\sf \implies y_3 =  - 2

 \sf  \underline{Substituting  \: the \:  values},

\sf   \implies(0,0) =  \dfrac{(2 + x + 3)}{3}  \: , \:  \dfrac{(3 + y + ( - 2))}{3}

\sf   \implies(0,0) =  \dfrac{2 + x + 3}{3}  \: , \:  \dfrac{3 + y  - 2}{3}

\sf   \implies(0,0) =  \dfrac{2 + 3 + x}{3}  \: , \:  \dfrac{3 + ( - 2) + y}{3}

\sf   \implies(0,0) =  \dfrac{5 + x}{3}  \: , \:  \dfrac{1 + y}{3}

 \bf \underline{Now},

\sf   \implies\dfrac{5 + x}{3} = 0  \: , \:  \dfrac{1 + y}{3} = 0

\sf   \implies5 + x = 0  \: , \:  1 + y = 0

\sf   \implies x =  - 5  \: , \:  y =  - 1

 \bf \underline{Therefore},

\sf   \implies Value \:  of  \: x  \: is  \: -5

\sf   \implies Value  \: of  \: y  \: is \: -1

 \underline{ \boxed{ \bf \red{Hence,  \: (x,y) \:  =  \: (-5,-1)}}}

Similar questions