Math, asked by mutakuduruvandana, 3 months ago

the points (-3,-3) ,(-3,2) , and (-3,5) are collinear ? give reasons​

Answers

Answered by SuitableBoy
128

\underbrace{\underline{\bigstar\:\bf Required\:Answer:}}

 \\

» We are given with three points and we are supposed to tell whether they are collinear or not.

» Collinear Points : Three or more points that lie on a straight line are know as collinear points.

» To solve this question, we would use the coordinate formula of finding the area of a triangle . If the area comes zero, then the points would be collinear.

 \\

◑ Let these points be (x_1,y_1)\:;\:(x_2,y_2)\: and \:(x_3,y_3)

It means :

  • \sf x_1=-3\: ,\: y_1=-3
  • \sf x_2=-3\:,\: y_2=2
  • \sf x_3 = -3\:,\: y_3= 5

 \\

Area of the triangle (a) :

 \\

 \dashrightarrow  \: \boxed{ \sf a =  \frac{1}{2} |x _{1} (y _{2} - y_{3})   + x _{2}(y _{3}- y _{1})  + x _{3}(y _{1} - y _{2})  |  } \\

 \\

 \colon \longrightarrow  \sf \: a =  \dfrac{1}{2}  |( - 3)(2 - 5) + ( - 3)(5 - ( - 3)) + ( - 3)( - 3 - 2)|  \\  \\

 \colon \longrightarrow \sf  \: a =  \frac{1}{2}  |( - 3)( - 3) + ( - 3)(8) + ( - 3)( - 5)|  \\  \\

 \colon \longrightarrow \sf \: a =  \dfrac{1}{2}  |9 + ( - 24) + 15|  \\  \\

 \colon \longrightarrow \sf \: a =  \dfrac{1}{2}  |24 - 24|  \\  \\

  \colon \longrightarrow \sf \: a =  \dfrac{1}{2}  \times 0 \\  \\

 \colon \implies \:  \boxed{ \bf{  \pink{a = 0}}} \: \:   \bigstar

 \\

\red\therefore\underline{\sf The \: given\:points\:are\:\bf{collinear.}}\\

 \\

_____________________________

Answered by kabitakumari5438
28

Answer:

\underbrace{\underline{\bigstar\:\bf Required\:Answer:}}</p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>» We are given with three points and we are supposed to tell whether they are collinear or not.</p><p></p><p>» Collinear Points : Three or more points that lie on a straight line are know as collinear points.</p><p></p><p>» To solve this question, we would use the coordinate formula of finding the area of a triangle . If the area comes zero, then the points would be collinear.</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>◑ Let these points be (x_1,y_1)\:;\:(x_2,y_2)\: and \:(x_3,y_3)(x1,y1);(x2,y2)and(x3,y3)</p><p></p><p>It means :</p><p></p><p>\sf x_1=-3\: ,\: y_1=-3x1=−3,y1=−3</p><p></p><p>\sf x_2=-3\:,\: y_2=2x2=−3,y2=2</p><p></p><p>\sf x_3 = -3\:,\: y_3= 5x3=−3,y3=5</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>◑ Area of the triangle (a) :</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>\begin{gathered} \dashrightarrow \: \boxed{ \sf a = \frac{1}{2} |x _{1} (y _{2} - y_{3}) + x _{2}(y _{3}- y _{1}) + x _{3}(y _{1} - y _{2}) | } \\ \end{gathered}⇢a=21∣x1(y2−y3)+x2(y3−y1)+x3(y1−y2)∣</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>\begin{gathered} \colon \longrightarrow \sf \: a = \dfrac{1}{2} |( - 3)(2 - 5) + ( - 3)(5 - ( - 3)) + ( - 3)( - 3 - 2)| \\ \\ \end{gathered}:⟶a=21∣(−3)(2−5)+(−3)(5−(−3))+(−3)(−3−2)∣</p><p></p><p>\begin{gathered} \colon \longrightarrow \sf \: a = \frac{1}{2} |( - 3)( - 3) + ( - 3)(8) + ( - 3)( - 5)| \\ \\ \end{gathered}:⟶a=21∣(−3)(−3)+(−3)(8)+(−3)(−5)∣</p><p></p><p>\begin{gathered} \colon \longrightarrow \sf \: a = \dfrac{1}{2} |9 + ( - 24) + 15| \\ \\ \end{gathered}:⟶a=21∣9+(−24)+15∣</p><p></p><p>\begin{gathered} \colon \longrightarrow \sf \: a = \dfrac{1}{2} |24 - 24| \\ \\ \end{gathered}:⟶a=21∣24−24∣</p><p></p><p>\begin{gathered} \colon \longrightarrow \sf \: a = \dfrac{1}{2} \times 0 \\ \\ \end{gathered}:⟶a=21×0</p><p></p><p>\colon \implies \: \boxed{ \bf{ \pink{a = 0}}} \: \: \bigstar:⟹a=0★</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>\begin{gathered}\red\therefore\underline{\sf The \: given\:points\:are\:\bf{collinear.}}\\\end{gathered}∴Thegivenpointsarecollinear.</p><p></p><p>\begin{gathered} \\ \end{gathered}</p><p></p><p>_____________________________</p><p></p><p>

Similar questions