Math, asked by muzakkir4670, 1 year ago

The points (5,-3)(-3,-2)(9,12)(17,11)taken in a form of options are parallelogram, rhombus, rectangle, square

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\textsf{Points are (5,-3), (-3,-2), (9,12), (17,11)}

\underline{\textbf{To find:}}

\textsf{Type of quadrilateral formed by the given points}

\underline{\textbf{Solution:}}

\textsf{Let the given points be A(5,-3), B(-3,-2), C(9,12) and  D(17,11)}

\mathsf{AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{AB=\sqrt{(5+3)^2+(-3+2)^2}}

\mathsf{AB=\sqrt{8^2+(-1)^2}}

\mathsf{AB=\sqrt{64+1}}

\mathsf{AB=\sqrt{65}}

\mathsf{BC=\sqrt{(-3-9)^2+(-2-12)^2}}

\mathsf{BC=\sqrt{(-12)^2+(-14)^2}}

\mathsf{BC=\sqrt{144+196}}

\mathsf{BC=\sqrt{360}}

\mathsf{CD=\sqrt{(9-17)^2+(12-11)^2}}

\mathsf{CD=\sqrt{(-8)^2+1^2}}

\mathsf{CD=\sqrt{64+1}}

\mathsf{CD=\sqrt{65}}

\mathsf{AD=\sqrt{(5-17)^2+(-3-11)^2}}

\mathsf{AD=\sqrt{(-12)^2+(-14)^2}}

\mathsf{AD=\sqrt{144+196}}

\mathsf{AD=\sqrt{340}}

\implies\mathsf{AB=CD\;and\;BC=AD}

\therefore\textbf{Opposite sides are equal} ----------(1)

\mathsf{AC=\sqrt{(5-9)^2+(-3-12)^2}}

\mathsf{AC=\sqrt{(-4)^2+(-15)^2}}

\mathsf{AC=\sqrt{16+225}}

\mathsf{AC=\sqrt{241}}

\mathsf{BD=\sqrt{(-3-17)^2+(-2-11)^2}}

\mathsf{BD=\sqrt{(-20)^2+(-13)^2}}

\mathsf{BD=\sqrt{400+169}}

\mathsf{BD=\sqrt{569}}

\implies\mathsf{AC\;\neq\;BD}

\therefore\textbf{Digonals are not unequal} --------(2)

\textsf{From (1) and (2),}

\textbf{ABCD is a parallelogram}

\therefore\textbf{The given points form a parallelogram}

\underline{\textbf{Distance formula:}}

\boxed{\begin{minipage}{8cm}$\\\mathsf{The\;distance\;between\;the\;points(x_1,y_)\;and\;(x_2,y_2)\;is}\\\\\;\;\;\;\mathsf{\;\;\;\;d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}\\$\end{minipage}}

Similar questions