Math, asked by jaysharma2766, 11 months ago

The points (7, 2) and ( ,) − 1 0 lie on a line

(a) 7 37 y x = − (b) 4 1 y x = +

(c) y x = 7 7 + (d) x y = 4 1​

Answers

Answered by amitnrw
4

4y = x + 1  is the line on which The points (7, 2) and(− 1 , 0 ) lie

Step-by-step explanation:

The points (7, 2) and(− 1 , 0 ) lie on a line

Slope -  ( 0 - 2)/( - 1 -  7)  =  -2 /-8  = 1/4

y = mx + c

m = 1/4

=> y  = x/4  + c

2 = 7/4  + c

=> c = 1/4

=> y = x/4  + 1/4

=> 4y = x + 1

4y = x + 1  is the line on which The points (7, 2) and(− 1 , 0 ) lie

Learn more:

The points (7, 2) and ( ,) − 1 0 lie on a line [1]

https://brainly.in/question/14092358

Given the point (2, 3), find the equations of four distinct lines on ...

brainly.in/question/11768162

Answered by jitendra420156
4

4y - x = 1

Step-by-step explanation:

Given points are (7,2) and (-1,0).

Here x_{1} = 7 , y_{1} = 2, x_{2} = -1 and y_{2} = 0

The slope of the line which passes through the given points is(m) =\frac{y_{2} - y_{1}  }{x_{2} - x_{1}  }

                                                                                                              =\frac{0-2}{-1-7}

                                                                                                              = \frac{-2}{-8}

                                                                                                               =\frac{1}{4}

The equation of the line is

(y - y_{1}) = m (x - x_{1})

⇒(y- 2) = \frac{1}{4}(x- 7)

⇒4y - 8 = x-7

⇒4y -x = -7+8

⇒4y - x = 1

Similar questions