CBSE BOARD X, asked by pupanrockz814, 10 months ago

The points (7,2) and (-1, 0) lie on a line
A) 7y= 3x-7
B) 4y=x+1
C) y=7x+7
D) x=4y+1

Answers

Answered by dheerajk1912
1

The points (7,2) and (-1, 0) lie on a line 4y= x+1. Option B is correct.

Explanation:

  • Given data

         Point (A) = (7,2)

         Point (B)= (-1,0)

  • In this question, we have to check which pair of satisfied equation of line
  • First taking line \mathbf{7y=3x-7} and point A

         \mathbf{7y=3x-7}

         Consider L.H.S of above equation

         \mathbf{L.H.S=7y=7\times 2=14}

         \mathbf{R.H.S=3x-7=3\times 7-7=21-7=14}

        From here it is clear that \mathbf{L.H.S=R.H.S} means point A    

          lie on this line.

         Now check for point B

         \mathbf{L.H.S=7y=7\times 0=0}

         \mathbf{R.H.S=3x-7=3\times (-1)-7=-3-7=-10}

        From here it is clear that \mathbf{L.H.S\neq R.H.S} ,so point B is    

         not lie on this line.

  • Now taking line \mathbf{4y=x+1} and point A

         \mathbf{4y=x+1}

         Consider L.H.S of above equation

         \mathbf{L.H.S=4y=4\times 2=8}

         \mathbf{R.H.S=x+1=7+1=8}

         From here it is clear that \mathbf{L.H.S=R.H.S} means point A    

         lie on this line.

         Now check for point B

         \mathbf{L.H.S=4y=4\times 0=0}

         \mathbf{R.H.S=x+1=-1+1=0}

          From here it is clear that \mathbf{L.H.S=R.H.S} means point B

          is also lie on this line.

          "So option B is correct".

Answered by jitendra420156
1

option B

4y= x+1

Explanation:

Given points are (7,2) and (-1,0)

The equation of line passes through the points (x_1,y_1) and (x_2,y_2) is

y-y_1=\frac{y_2-y_1}{x_2-x_1} (x-x_1)

The required equation of the straight line is

y-2=\frac{0-2}{-1-7} (x-7)

\Leftrightarrow (y-2)=\frac{2}{8} (x-7)

\Leftrightarrow (y-2)=\frac{1}{4} (x-7)

\Leftrightarrow (4y-8)= (x-7)

\Leftrightarrow 4y= x-7+8

\Leftrightarrow 4y= x+1

Similar questions