Math, asked by pradeepkhobraga, 1 year ago

the points A(2,9), B(a,5), C(5,5) are the vertices of a triangle ABC right angles at B. Find the value of 'a' and hence the area of the triangle

Answers

Answered by wifilethbridge
148

Answer:

The value of a must be 2 and the area of triangle is 6 sq.units.

Step-by-step explanation:

A=(2,9)

B=(a,5)

C=(5,5)

Now to Find AB ,BC and AC  we will use distance formula :

Distance formula :d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

To Find Length of AB

A=(x_1,y_1)=(2,9)

B=(x_2,y_2)=(a,5)

d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

AB =\sqrt{(a-2)^2+(5-9)^2}

AB =\sqrt{a^2+4-4a+16}

AB =\sqrt{a^2-4a+20}

To Find Length of BC

B=(x_1,y_1)=(a,5)

C=(x_2,y_2)=(5,5)

d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

BC =\sqrt{(5-a)^2+(5-5)^2}

BC =\sqrt{a^2+25-10a+0}

BC=\sqrt{a^2+25-10a}

To Find Length of AC

A=(x_1,y_1)=(2,9)

C=(x_2,y_2)=(5,5)

d =\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

AC =\sqrt{(5-2)^2+(5-9)^2}

AC =\sqrt{9+16}

AC =\sqrt{25}

AC =5

Since a triangle ABC right angles at B

So, AB = Perpendicular

BC = Base

AC = Hypotenuse

Pythagoras theorem :

Hypotenuse^2=Perpendicular^2+Base^2

AC^2=AB^2+BC^2

25=(\sqrt{a^2-4a+20})^2+(\sqrt{a^2+25-10a})^2

25=a^2-4a+20+a^2+25-10a

25=2a^2-14a+45

2a^2-14a+20=0

a^2-7a+10=0

a^2-5a-2a+10=0

a(a-5)-2(a-5)=0

(a-2)(a-5)=0

a=2,5

With a = 2

AB =\sqrt{a^2-4a+20}=\sqrt{2^2-4(2)+20}=4

BC=\sqrt{a^2+25-10a}=\sqrt{2^2+25-10(2)}=3

Area of triangle = \frac{1}{2} \times Base \times Height

                          = \frac{1}{2} \times 3 \times 4

                          = 6 unit ^2

With a = 5

AB =\sqrt{a^2-4a+20}=\sqrt{5^2-4(5)+20}=5

BC=\sqrt{a^2+25-10a}=\sqrt{5^2+25-10(5)}=0

Area of triangle = \frac{1}{2} \times Base \times Height

                          = \frac{1}{2} \times 0 \times 5

                          = 0 unit ^2

So, the value of a must be 2 and the area of triangle is 6 sq.units.

Answered by ramakantanayak1965
61

Answer:

Step-by-step explanation:

Attachments:
Similar questions