Math, asked by tina1132, 1 year ago

The points A(4,7) , B(p,3) and C(7,3) are the vertices of a right triangle, right angled at B . find the value of p.

Answers

Answered by Anonymous
170
Heya!!

-----------------------------

Refer to attachment :)

Hope it helps uh :)

Attachments:
Answered by wifilethbridge
78

Answer:

The value of  can be 4 or 7

Step-by-step explanation:

The points A(4,7) , B(p,3) and C(7,3) are the vertices of a right triangle, right angled at B

So, AB = perpendicular

BC = Base

AC = Hypotenuse

 A=(4,7) , B=(p,3)

We will use distance formula to calculate the length of AB

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(4,7)

(x_2,y_2)=(p,3)

Length of AB = \sqrt{(p-4)^2+(7-3)^2}

Length of AB = \sqrt{p^2+16-8p+16}

Length of AB = \sqrt{p^2-8p+32}

To Find Length of BC

(x_1,y_1)=(p,3)

(x_2,y_2)=(7,3)

Length of BC = \sqrt{(7-p)^2+(3-3)^2}

Length of BC = \sqrt{49+p^2-14p}

To Find Length of AC

(x_1,y_1)=(4,7)

(x_2,y_2)=(7,3)

Length of AC = \sqrt{(7-4)^2+(3-7)^2}

Length of AC = \sqrt{9+16}

Length of AC = 5

So, Hypotenuse = AC = 5

Base =  BC = \sqrt{49+p^2-14p}

Perpendicular = AB = \sqrt{p^2-8p+32}

Hypotenuse^2=Perpendicular^2+Base^2

5^2=(\sqrt{p^2-8p+32})^2+(\sqrt{49+p^2-14p})^2

25=p^2-8p+32+49+p^2-14p

25=2p^2-22p+81

2p^2-22p+56=0

p^2-11p+28=0

p^2-7p-4p+28=0

p(p-7)-4(p-7)=0

(p-7)(p-4)=0

So, p = 4,7

Hence the value of  can be 4 or 7

Similar questions