The points A,B and C with position vectors 3i-yj+2k,5i-j+k and 3xi+3j-k are collinear. Find the values of x and y and also the ratio in which the point B divides AC.
Answers
Answered by
2
Step-by-step explanation:
EXPLANATION.
Points A B C are the position vectors,
From equation, (3) we get.
⇒ 2 = 2λ.
⇒ λ = 1.
Put the value of λ in equation, (1) and (2) we get.
⇒ 2 = 1(3x - 5).
⇒ 2 = 3x - 5.
⇒ 8 = 3x.
⇒ x = 8/3.
⇒ -(1 - y) = 4.
⇒ - 1 + y = 4.
⇒ y = 5.
Value of x = 8/3 y = 5 λ = 1
As the point divides in the ratio of k or 1, we get,
Co-ordinates are,
A = (3,-1,2).
B = (5,-1,1).
C = (8,3,-1).
⇒ 8k + 3 = 5 ( k + 1 ).
⇒ 8k + 3 = 5k + 5.
⇒ 8k - 5k = 5 - 3.
⇒ 3k = 2.
⇒ k = 2/3.
⇒ 3k - 5/k + 1 = -1.
⇒ 3k - 5 = - 1(k + 1).
⇒ 3k - 5 = -k - 1.
⇒ 3k + k = -1 + 5.
⇒ 4k = 4.
⇒ k = 1.
⇒ -(k - 2)/k + 1 = 1.
⇒ -k + 2 = k + 1.
⇒ 0.
Thus, B divides AC into ratio = 2/3 or 1
Similar questions