Math, asked by paulsonnaik, 4 months ago

the points of trisection of the line segment joiming (4,-1) and (-2,-3)​

Answers

Answered by singhamanpratap02
1

Answer:

Using the section formula, if a point (x,y) divides the line joining the points (x1 ,y1 ) and (x2,y2 ) in the ratio m:n, then

(x \:, y) =  (\frac{mx2 + nx1}{m + n} , \frac{my2 + ny1}{m + n} )

Let P and Q be the points of trisection of line joining the points A(4,1) & B(-2,-3).

Then, AP = PQ = QB

Now, P divides AB in the ratio 1:2 and Q divides AB in the ratio 2:1.

Therefore,

Coordinates  \: of  \: P =  (\frac{ - 7 + 4}{3} , \frac{4 - 4}{3} ) \\ ( - 1,0)

Coordinates  \: of \:  Q = ( \frac{ - 14 + 2}{3} , \frac{8 - 2}{3} ) \\ ( - 4,2)

Hence,  \: the \:  two \:  points  \: of \:  trisection  \: are \:  P(−1,0) \:  and  \: (−4,2).</p><p>

Similar questions