the points (p,2),(-3,4) and (-7,1) are collinear then find the value of P
Utsavsterbon:
Is it your exam tomorrow?
Answers
Answered by
2
If the 3 points are collinear then the area formed by the triangle of the given points shall be 0
A(p,2) B(-3,4) C(-7,1)
So, Area of ABC =1/2 [x1 (y2 - y3) + x2(y3 - y1) + x3 (y1 - y2)] = 0
substituting the values,
=> 1/2{p (2) -3 (-1) -7 (-2)} =0
=> 2p +3 +14 =0
=> 2p = -17
=> p =-17/2
A(p,2) B(-3,4) C(-7,1)
So, Area of ABC =1/2 [x1 (y2 - y3) + x2(y3 - y1) + x3 (y1 - y2)] = 0
substituting the values,
=> 1/2{p (2) -3 (-1) -7 (-2)} =0
=> 2p +3 +14 =0
=> 2p = -17
=> p =-17/2
Answered by
6
If 3 points are collinear then Ιx₁(y₂-y₃)+x₂(y₃-y₁)+x₃(y₁-y₂)Ι=0
x₁=p,y₁=2,x₂=-3,y₂=4,x₃=-7,y₃=1.
Ιp(4-1)+(-3)(1-2)+(-7)(2-4)Ι=0
Ι3p+3+14Ι=0
3p=-17
p=-17/3
Hope this helps you ............... :)
x₁=p,y₁=2,x₂=-3,y₂=4,x₃=-7,y₃=1.
Ιp(4-1)+(-3)(1-2)+(-7)(2-4)Ι=0
Ι3p+3+14Ι=0
3p=-17
p=-17/3
Hope this helps you ............... :)
Similar questions