the points P ( 4,3) Q ( -5,-1) and T ( 2,-2) are vertices of a
(a) Equilateral triangle
(b) Isosceles triangle
(c) Scalene triangle
(d) No triangle
Answers
Finding the distance between the points,
(PQ)² = (-5-4)² + (-1-3)²
= (-9)² + (-4)²
= 81 + 16
= 97
PQ =
Now,
(QT)² = (2+5)² + (-2+1)²
= (7)² + (-1)²
= 49 + 1
= 50
QT =
And,
(PT)² = (2-4)² + (-2-3)²
= (-2)² + (-5)²
= 4 + 25
= 29
PT =
So,
We can conclude that all side are different
PQ ≠ QT ≠ PT
Hence,
It is a Scalene triangle
Option c) Scalene triangle is correct
Answer:
ing the distance between the points,
ing the distance between the points,(PQ)² = (-5-4)² + (-1-3)²
ing the distance between the points,(PQ)² = (-5-4)² + (-1-3)² [tex] = (-9)² + (-4)²
= 81 + 16
= 81 + 16 = 97
= 81 + 16 = 97PQ = \sqrt{97}
= 81 + 16 = 97PQ = \sqrt{97} 97[/tex]
Now,
Now,(QT)² = (2+5)² + (-2+1)²
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)²
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50}
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)²
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)²
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29}
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29 So,
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29 So,We can conclude that all side are different
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29 So,We can conclude that all side are differentPQ ≠ QT ≠ PT
Now,(QT)² = (2+5)² + (-2+1)² = (7)² + (-1)² = 49 + 1 = 50QT = \sqrt{50} 50 And,(PT)² = (2-4)² + (-2-3)² = (-2)² + (-5)² = 4 + 25 = 29PT = \sqrt{29} 29 So,We can conclude that all side are differentPQ ≠ QT ≠ PTHence,
Isosceles triangle
Step-by-step explanation:
please Mark as brainliest and follow