Math, asked by poornajyosubbu, 8 months ago

The points which divide internally and externally the line segment joining the points (1,7) (6,-3) in the ratio 2:3 are

a) (3,3),(15,15)

b) (3,3), (-15,-15)

c) (3,3) (-9,27)

d) (-3,3) (9,27)




Answers

Answered by Anonymous
12

Given ,

The line segment joining the points (1,7) (6,-3) in the ratio 2 : 3

We know that , the formula of section formula internally is given by

 \large{ \sf{  \fboxed{x =  \frac{m x_{2} + nx_{1} }{m + n}  \:  \: , \:  \: y=  \frac{m y_{2} + ny_{1} }{m + n} }}}

Thus ,

\sf \mapsto  x =  \frac{2(6) + 3(1)}{2 + 3} \:  \: , \:  \: y =  \frac{2( - 3) + 3(7)}{2 + 3}   \\  \\\sf \mapsto  x =  \frac{15}{5}  \:  \: , \:  \: y =  \frac{15}{5}  \\  \\\sf \mapsto  x = 3 \:  \: , \:  \: y =3

Now , the formula of externally section formula is given by

 \large{ \sf{ \fboxed{x =  \frac{m x_{2}  -  nx_{1} }{m  -  n} \:  \: , \:  \:  y=  \frac{m y_{2}  -  ny_{1} }{m  -  n} }}}

Thus ,

\sf \mapsto  x =  \frac{2(6)  - 3(1)}{2  - 3} \:  \: , \:  \: y =  \frac{2( - 3)  -  3(7)}{2 - 3}   \\  \\\sf \mapsto  x =    -  \frac{9}{1}  \:  \: , \:  \: y =    \frac{ - 27}{  - 1}  \\  \\\sf \mapsto  x =  - 9 \:  \: , \:  \: y =27

 \sf \therefore \underline{The  \: correct \:  option  \: is \:  (C) \: i.e \:   \:  (3,3)  \: , \:  (-9,27)}

Answered by phanindhra58
1

Step-by-step explanation:

,y=m+nmy2+ny1</p><p>Thus ,</p><p>\begin{gathered}\sf \mapsto x = \frac{2(6) + 3(1)}{2 + 3} \: \: , \: \: y = \frac{2( - 3) + 3(7)}{2 + 3} \\ \\\sf \mapsto x = \frac{15}{5} \: \: , \: \: y = \frac{15}{5} \\ \\\sf \mapsto x = 3 \: \: , \: \: y =3\end{gathered}↦x=2+32(6)+3(1),y=2+32(−3)+3(7)↦x=515,y=515↦x=3,y=3</p><p>Now , the formula of externally section formula is given by</p><p>\large{ \sf{ \fboxed{x = \frac{m x_{2} - nx_{1} }{m - n} \: \: , \: \: y= \frac{m y_{2} - ny_{1} }{m - n} }}}\fboxedx=m−nmx2−nx1,y=m−nmy2−ny1</p><p>Thus ,</p><p>\begin{gathered}\sf \mapsto x = \frac{2(6) - 3(1)}{2 - 3} \: \: , \: \: y = \frac{2( - 3) - 3(7)}{2 - 3} \\ \\\sf \mapsto x = - \frac{9}{1} \: \: , \: \: y = \frac{ - 27}{ - 1} \\ \\\sf \mapsto x = - 9 \: \: , \: \: y =27\end{gathered}↦x=2−32(6)−3(1),y=2−32(−3)−3(7)↦x=−19,y=−1−27↦x=−9,y=27</p><p></p><p>

Similar questions