Math, asked by nurinirdina, 6 months ago

The polynomial f(x) = x⁴ - 2x³ - px² + q is divisible by (x-2)². Find the values p and q. Hence, solve the equation.

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\mathsf{The\;polynomial\;f(x)=x^4-2x^3-px^2+q\;is\;divisible\;by\;(x-2)^2}

\underline{\textsf{To find:}}

\textsf{The values of p and q}

\underline{\textsf{Solution:}}

\mathsf{Since\;f(x)\;is\;divisible\;by\;(x-2)^2,\,we\;can\;write}

\mathsf{x^4-2x^3-px^2+q=(x^2-4x+4)(x^2+ax+\frac{q}{4})}

\mathsf{Equating\;coefficient\;of\;x^3\;on\;bothsies,}

\mathsf{-2=a-4}

\implies\boxed{\mathsf{a=2}}

\mathsf{Equating\;coefficient\;of\;x^2\;on\;bothsies,}

\mathsf{-p=4+\frac{q}{4}-4a}

\mathsf{-p=4+\frac{q}{4}-8}

\mathsf{-p=\frac{q}{4}-4}

\mathsf{-4p=q-16}

\mathsf{4p+q=16}.......(1)

\mathsf{Equating\;coefficient\;of\;x\;on\;bothsies,}

\mathsf{0=-q+4a}

\mathsf{0=-q+8}

\implies\boxed{\mathsf{q=8}}

\mathsf{(1)\implies\;4p+8=16}

\mathsf{4p=8}

\implies\boxed{\mathsf{p=2}}

\mathsf{Consider,}

\mathsf{x^2+2x+2=0}

\mathsf{x^2+2x+1=-1}

\mathsf{(x+1)^2=i^2}

\mathsf{x+1=\pm\,i}

\implies\mathsf{x=-1\pm\,i}

\mathsf{(x-2)^2=0\implies\;x=2,2}

\underline{\textsf{Answer:}}

\mathsf{Roots\;of\;f(x)\;are\;2,2,-1+i,-1-i}

\underline{\textsf{Find more:}}

If a,b,c are rational then the root of equation (a+2b-3c )x²+(b+2c-3a)x+ (c+2a-3b)=0

https://brainly.in/question/4813981

Given that a=alpha and b=beta are roots of 2x^2+x+14=0 find the equation whose roots are a^4 and b^4

https://brainly.in/question/17088379

If two of the roots of equation x4 - 2x3 + ax2 + 8x + b = 0 are equal in magnitude but opposite in sig

then value of 4a + b is equal to :

(A) 16

(B) 8

(C) -16

theme values are also

28 ** ** *5 = o are equal in magnitude but opposite in

(D) -8​

https://brainly.in/question/10136947

If the roots of x^2 -bx/ax-c = k-1/k+1 are numerically equal and opposite in sign then k=?​

https://brainly.in/question/16638285

Answered by pulakmath007
5

SOLUTION

GIVEN

The polynomial f(x) = x⁴ - 2x³ - px² + q is divisible by (x-2)²

TO DETERMINE

  • The values p and q

  • To solve the equation

CONCEPT TO BE IMPLEMENTED

If c is a multiple root of the polynomial equation f(x) = 0 of order r then c is a multiple root of the equation f' (x) = 0 of order ( r - 1 )

EVALUATION

Here it is given that

f(x) = 4x³ - 6x² - 2px

∴ f ' (x) = x⁴ - 2x³ - px² + q

It is also given that f(x) is divisible by (x-2)²

So 2 is a multiple root of f(x) of order 2

∴ f(2) = 0 & f ' (2) = 0

f(2) = 0 gives

16 - 16 - 4p + q = 0

 \sf{q = 4p} \:  \:  \:  \:  \:  \: .......(1)

Again f ' (2) = 0 gives

32 - 24 - 4p = 0

 \implies \sf{4p = 8}

 \implies \sf{p = 2}

From Equation (1) we get

 \sf{q = 4 \times 2}

∴ q = 8

So the given equation becomes

f(x) = x⁴ - 2x³ - px² + q

∴ f(x) = x⁴ - 2x³ - 2x² + 8

Now we factorise it as below :

 \sf{f(x) =  {x}^{4}  - 2 {x}^{3} - 2 {x}^{2} + 8  }

 \sf{ =  {x}^{3} (x - 2 ) - 2( {x}^{2}  -  4)  }

 \sf{ =  (x - 2 )( {x}^{3} - 2x - 4)  }

 \sf{ =  (x - 2 )( {x}^{3} -  2 {x }^{2}  + 2 {x}^{2}  - 4x +  2x - 4)  }

 \sf{ =  (x - 2 )(x - 2)( {x}^{2}  +  2x  + 2)  }

 \sf{ =   {(x - 2)}^{2} ( {x}^{2}  +  2x  + 2)  }

Now (x - 1)² = 0 gives x = 1 , 1

Again

 \sf{( {x}^{2}  +  2x  + 2)} = 0 \:  \: gives

 \displaystyle \sf{x =  \frac{ - 2 \:  \pm \:  \sqrt{4 - 4.1.2} }{2.1} }

 \displaystyle \sf{ =  \frac{ - 2 \:  \pm \:  \sqrt{ - 4 } }{2} }

 \displaystyle \sf{ =  \frac{ - 2 \:  \pm \:  2i }{2} }

 =  \sf{ -1  \:  \pm \: i}

So the roots are

 \sf{2 \: , \: 2 \: , \:  - 1 + i \: , \:  - 1 - i}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The inverse of 3 modulo 7 is?

https://brainly.in/question/19469995

2. The quadratic polynomial where α=5+2√6 and αβ=1 is

https://brainly.in/question/24697408

Similar questions