Math, asked by harshithab808, 19 days ago

the polynomial kx³+3x²-8 and 3x³-5x+8 are divided by X+2.if the remainder in each case is the same ,find the value of k​

Answers

Answered by dheerajr17
5

Answer:

\frac{5}{4}

Step-by-step explanation:

using remainder theorem,

k(-2)^{3}+3(-2)^{2}-8=3(-2)^{3}-5(-2)+8\\\\12-8-8-10+24=8k\\k=\frac{10}{8}=\frac{5}{4}

Answered by Anonymous
80

\huge \rm {Answer:-}

__________________________________

\large \to \tt {\underline{Given:-}}

★The two polynomials,

 \implies {kx^{3}+3x^{2}-8}

★And,

 \implies {3x^{3}-5x+8}

★Leave the same remainder when divided by x+2

\large \implies {x+2=0}

\large \implies \pink {x=-2}

__________________________________

\large \to \tt {\underline{To\: find:-}}

★ The value of "K"

__________________________________

★Substituting,x=-2 in the above given polynomials-

\large \to \tt {\underline{Polynomial\: 1:-}}

 \implies {P(x)=kx^{3}+3x^{2}-8}

 \implies {P(-2)=k(-2)^{3}+3(-2)^{2}-8}

 \implies {P(-2)=k(-8)+3(4)-8}

 \implies {P(-2)=-8k+12-8}

 \to \purple {\fbox {P(-2)=-8k+4}}

__________________________________

\large \to \tt {\underline{Polynomial\: 2:-}}

 \implies {Q(x)=3x^{3}-5x+8}

 \implies {Q(-2)=3(-2)^{3}-5(-2)+8}

 \implies {Q(-2)=3(-8)+10+8}

 \implies {Q(-2)=-24+10+8}

 \to \red {\fbox {Q(-2)=-6}}

_________________________________

★As the two polynomials leave the same remainder when divided,they can be equated .

 \implies {P(-2)=Q(-2)}

 \implies {-8k+4=-6}

 \implies {-8k=-6-4}

 \implies {-8k=-10}

\large \implies {k=\frac{\cancel{-}10}{\cancel{-}8}}

\large \to \orange  {k=\frac{5}{4}}

__________________________________

\large \to \tt {\underline{Remainder\: of\: the\: polynomials:-}}

\small\to \tt {Polynomial\: 2=-6}

\large \to \tt {\underline{Polynomial\: 1:-}}

 \implies {x=-2\: and\: k=\frac{5}{4}}

 \implies {kx^{3}+3x^{2}-8}

\large \implies {\frac{5}{4}(-2)^{3}+3(-2)^{2}-8}

 \implies {\frac{5}{4}-8+3(4)-8}

 \implies {5\times-2+12-8}

 \implies {-10+12-8}

\large \to \blue {\fbox {-6}}

__________________________________

\large \to \tt {\underline{Thereupon, verified✓}}

 \implies \green {★The \: remainder=-6}

Similar questions