Math, asked by Seshathrihari, 9 months ago

The polynomial p(x) = 4 -2x³+3x²-ax+3a-7 when divided by (x+1), leaves a remainder 19. Find the value of a. Also find the remainder when p(x) is divided by (x+2)

Answers

Answered by harshitmalik04
3

Answer:

a = 17

Remainder when p(x) is divided by (x+2) = 78

Attachments:
Answered by Anonymous
10

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow p(x)= 4-2x^3+3x^2-ax+3a-7

\sf\dashrightarrow g(x)=x+1

\sf\dashrightarrow when,\:p(x)\:gets\:divided\:by\:(x+1),\:it\:leaves \:the\:remainder\:is\:19

\sf\therefore r(x)=19

\sf\dashrightarrow another\:g(x)= (x+2)

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow THE\:VALUE\:OF\:x

\sf\dashrightarrow AND,THE\:REMAINDER\:WHEN\:P(X)\:IS\:DIVIDED \:BY\:(x+2)

\large\underline\bold{SOLUTION,}

\sf\therefore r(x)=19

\sf\implies 4-2x^3+3x^2-ax+3a-7=19

\sf\therefore g(x)=x+1

\sf\implies x=-1

\sf\implies 2(-1)^3+3(-1)^2-a(-1)+3a-7+4=19

\sf\implies 2+3+a+3a-3=19

\sf\implies 5+4a-3=19

\sf\implies 4a=19-2

\sf\implies 4a=17

\sf\implies a =\dfrac{17}{4}

\large{\boxed{\bf{ \star\:\: a= \dfrac{17}{4}\:\: \star}}}

_______________

\sf\dashrightarrow  NOW, FINDING\: FOR\:g(x)= (x+2).

\sf\therefore x+2=0

\sf\implies x=-2

\sf\therefore a= \dfrac{17}{4}

\sf\therefore p(x)= 4-2x^3+3x^2-ax+3a-7

\sf\implies 2x^3+3x^2-ax+3a-3

\sf\implies 2(-2)^3+3(-2)^2-\bigg( \dfrac{17}{4} \bigg) (-2)+3\bigg( \dfrac{17}{4}-3

\sf\implies 2(-2)^3+3(-2)^2-\bigg( \dfrac{17}{\cancel{4}} \bigg) (\cancel{-2})+3\bigg( \dfrac{17}{4}\bigg)-3

\sf\implies -16+12+ \dfrac{17}{2}+3\times \bigg(\dfrac{17}{4} \bigg) - 3

\sf\implies \left( -8 +\dfrac{17}{2} \right) + \left( \dfrac{51}{4}-3\right)

\sf\implies \left( \dfrac{-16+17}{2} \right) + \left( \dfrac{51-12}{4}\right)

\sf\implies \dfrac{1}{2}+ \dfrac{39}{4}

\sf\implies \dfrac{4+78}{4}

\sf\implies \dfrac{82}{8}

\sf\implies \cancel\dfrac{82}{8}

\sf\implies  \dfrac{41}{4}

\large{\boxed{\bf{ \star\:\:remainder\:of\:p(x)= \dfrac{41}{4} \:\: \star}}}

________________

Similar questions