The polynomial p(x)=x^4-2x^3+3x^2-ax+3a.when divided by x+1 leaves remainder 19 .find value of a
Answers
Answered by
7
given :-
P(x) = x⁴ - 2x³ + 3x² - ax + 3a
g(x) = x + 1
➡ x = -1
on putting value,
P(-1) = (-1)⁴ - 2(-1)³ + 3(-1)² - a(-1) + 3a
= 1 + 2 + 3 + a + 3a
= 6 + 4a
ATQ, the remainder is 19.
➡ 6 + 4a = 19
➡ 4a = 19 - 6
➡ 4a = 13
➡ a = 13/4
P(x) = x⁴ - 2x³ + 3x² - ax + 3a
g(x) = x + 1
➡ x = -1
on putting value,
P(-1) = (-1)⁴ - 2(-1)³ + 3(-1)² - a(-1) + 3a
= 1 + 2 + 3 + a + 3a
= 6 + 4a
ATQ, the remainder is 19.
➡ 6 + 4a = 19
➡ 4a = 19 - 6
➡ 4a = 13
➡ a = 13/4
chauhananurag2004:
It leaves remainder 19
Similar questions