Math, asked by RuchithaS, 9 months ago

The polynomial P(x)= x⁴ - 2x³ + 3x² - 5 x + 3 - 7 divided by x+1 leaves the reminder 19. Also find the remainder when P(x) is divided by x+2​

Answers

Answered by asdpradosh8
1

Answer:

Step-by-step explanation:

P(x)= x⁴ - 2x³ + 3x² - 5 x + 3 - 7

by remainder theorem that states

                                                          x+2=0

                                                          x= -2

if we take divisor as x+2 then if we put x=-2 in P(x) that's will become the remainder when the x+2 divides expression P(x)= x⁴ - 2x³ + 3x² - 5 x + 3 - 7

P(x)= x⁴ - 2x³ + 3x² - 5 x + 3 - 7

P(2)=(-2)⁴ - 2*(-2)³ + 3*(-2)² - 5 *(-2) + 3 - 7

      =16+16-12+10+3-7

      =26

26 remainder becomes when x+2 divides expression  P(x)= x⁴ - 2x³ + 3x² - 5 x + 3 - 7

Similar questions