The Polynomial. P(x)=x4-2x3+ax+3a-7. when divided by (x+1), leave the remainder 19. find the value of a. also ,find the remainder, when p(x) is divided by (x+2).
Answers
answer-:a=23/2 remainder=43/2
Step-by-step explanation:
x+1=0
x=-1
P(x)=x4-2x3+ax+3a-7=19
P(-1)=(-1)4-2(-1)3+a(-1)+3a-7=19
P(-1)= 1+2-a+3a-7=19
P(-1)=-4+2a=19
P(-1)=2a=19+4
P(-1)=a=23/2
g(x)=x+2
x=-2
P(-2)=(-2)4-2(-2)3+23/2(-2)+23/2(3)-7
P(-2)=16+16-23+39/2-7
P(-2)=(32+32-46+39-14)/2
P(-2)=(64-46+25)/2
P(-2)=18+25/2
P(-2)=43/2
p(x) = x4 – 2x3 + 3x2 – ax + 3a – 7
Divisor = x + 1
x + 1 = 0
x = -1
So, substituting the value of x = – 1 in p(x),
we get,
p(-1) = (-1)4 – 2(-1)3 + 3(-1)2 – a(-1) + 3a – 7.
19 = 1 + 2 + 3 + a + 3a – 7
19 = 6 – 7 + 4a
4a – 1 = 19
4a = 20
a = 5
Since, a = 5.
We get the polynomial,
p(x) = x4 – 2x3 + 3x2 – (5)x + 3(5) – 7
p(x) = x4 – 2x3 + 3x2 – 5x + 15 – 7
p(x) = x4 – 2x3 + 3x2 – 5x + 8
As per the question,
When the polynomial obtained is divided by (x + 2),
We get, x + 2 = 0
x = – 2
So, substituting the value of x = – 2 in p(x), we get,
p(-2) = (-2)4 – 2(-2)3 + 3(-2)2 – 5(-2) + 8
⇒ p(-2) = 16 + 16 + 12 + 10 + 8
⇒ p(-2) = 62 Therefore, the remainder = 62.