Math, asked by vinodkumamishra699, 9 months ago

the polynomial PX equal to x power 4 minus 2 x cube + 3 x square minus A X + b when divided by X - 1 and X + 1 leaves the remainder 5 and 19 respectively find the value of A and B hence find the remainder when PX is divided by x minus 2 ​

Answers

Answered by jayveerkatariya380
21

Answer:

We have,

p(x)=x^4–2x^3+3x^2-ax+b

By remainder theorem, when p(x) is divided by (x-1) and (x+1) , the remainders are equal to p(1) and p(-1) respectively.

By the given condition, we have

p(1)=5 and p(-1)=19

=> (1)^4–2(1)^3+3(1)^2-a(1)+b=5 and (-1)^4–2(-1)^3+3(-1)^2-a(-1)+b=19

=> 1–2+3-a+b=5 and 1-(-2)+3+a+b=19

=> -a+b=5–1+2–3 and 1+2+3+a+b=19

=> -a+b=3 and a+b=19–1–2–3

=> -a+b=3 and a+b=13

Adding these two equations,we get

-a+b+a+b=3+13

=> 2b=16

=> 2b/2=16/2

=> b=8

Putting b=8 in a+b=13 , we get

a+8=13

=> a=13–8

=> a=5

Therefore, a=5 and b=8 .

Step-by-step explanation:

follow me

Answered by deekshadalavai
5

Answer:

x³-x³-3x-x-1

Step-by-step explanation:

Please mark my answer as brainlist answer

Attachments:
Similar questions