Math, asked by jainrasika71, 5 hours ago

the polynomial whose zeroes are underroot 2+1 and underoot 2 -1 is

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given zeroes of the polynomial are

\rm :\longmapsto\: \sqrt{2} + 1

and

\rm :\longmapsto\: \sqrt{2}  -  1

Let assume that

\rm :\longmapsto\: \alpha  =  \sqrt{2} + 1

and

\rm :\longmapsto\: \beta  =  \sqrt{2} - 1

So, Consider

\rm :\longmapsto\: \alpha  +  \beta

\rm \:  =  \: ( \sqrt{2} + 1) + ( \sqrt{2} - 1)

\rm \:  =  \:  \sqrt{2} + 1+ \sqrt{2} - 1

\rm \:  =  \: 2 \sqrt{2}

 \red{\rm\implies \: \alpha  +  \beta  = 2 \sqrt{2}}

Now, Consider

\rm :\longmapsto\: \alpha  \beta

\rm \:  =  \: ( \sqrt{2} + 1)( \sqrt{2} - 1)

\rm \:  =  \:  {( \sqrt{2} )}^{2}  -  {1}^{2}

\rm \:  =  \: 2 - 1

\rm \:  =  \: 1

 \red{\rm\implies \: \alpha  \beta  = 1}

So, Required Quadratic polynomial is given by

 \red{\rm :\longmapsto\:f(x) = k\bigg[{x}^{2} - ( \alpha  + \beta )x +  \alpha  \beta \bigg], \: k \:  \ne \: 0}

 \red{\rm :\longmapsto\:f(x) = k\bigg[{x}^{2} - 2 \sqrt{2} x + 1 \bigg], \: k \:  \ne \: 0}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know,

For Cubic Polynomial

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta +   \beta  \gamma  +  \gamma \alpha   =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

For Quadratic polynomial

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \: a {x}^{2}  + b x +  c, \: then}

\boxed{ \bf{ \:  \alpha   + \beta    =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha\beta    =  \dfrac{c}{a}}}

Similar questions