the polynomials ax^3+bx^2+x-6has( x+2) as a factor and leaves remainder 4 . when divided by x-2 find a and b
Answers
Answered by
10
P(x) = ax^3 + bx^2 + x - 6
p(x=-2) = a (-2)^3 + b (-2)^2 -2 -6
0 = -8 a + 4 b -8 (since it is a factor p(x)=0 )
-8 a + 4 b = 8 ---------------------------------------------------(1)
P(x) = ax^3 + bx^2 + x - 6
p(x = 2) = a (2)^3 + b (2)^2 +2 -6
4 = 8 a + 4 b -4
8 a + 4 b = 8 -------------------------------------------------(2)
solving equation 1 & 2
(1) + (2) => 8 b = 16 , b = 2
(1) - (2) => -16 a = 0 , a = 0
so Answer is a=0 & b=2
p(x=-2) = a (-2)^3 + b (-2)^2 -2 -6
0 = -8 a + 4 b -8 (since it is a factor p(x)=0 )
-8 a + 4 b = 8 ---------------------------------------------------(1)
P(x) = ax^3 + bx^2 + x - 6
p(x = 2) = a (2)^3 + b (2)^2 +2 -6
4 = 8 a + 4 b -4
8 a + 4 b = 8 -------------------------------------------------(2)
solving equation 1 & 2
(1) + (2) => 8 b = 16 , b = 2
(1) - (2) => -16 a = 0 , a = 0
so Answer is a=0 & b=2
Similar questions