Math, asked by ty007504, 19 days ago

the population of a city is 2000 what will its population be after 3 years if the rate of growth of world population is 10% per annum​

Answers

Answered by beenamanu
0

Answer:

Population after 3 years = 2000 + ( 2000 x 3 x 10/100)

= 2,000 + 600 = 2,600

Answered by Anonymous
36

Given :

  • Present population = 2000
  • Rate of increase = 10 %

 \\ \\

To Find :

  • Population after 3 years = ?

 \\ \\

Solution :

 \bigstar Formula Used :

  •  {\underline{\boxed{\red{\sf{ Population{\small_{(3 \; years)}} = Population{\small_{(Present)}} \bigg\lgroup 1 + \dfrac{Increase \; \%}{100} \bigg\rgroup^{Time} }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \bigstar Calculating the Population after 3 years :

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = Population{\small_{(Present)}} \bigg\lgroup 1 + \dfrac{Increase \; \%}{100} \bigg\rgroup^{Time} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \bigg\lgroup 1 + \dfrac{10}{100} \bigg\rgroup^{3} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \bigg\lgroup 1 + \cancel\dfrac{10}{100} \bigg\rgroup^{3} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \bigg\lgroup 1 + 0.10 \bigg\rgroup^{3} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \bigg\lgroup 1.10 \bigg\rgroup^{3} } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \times 1.10 \times 1.10 \times 1.10 } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { Population{\small_{(3 \; years)}} = 2000 \times 1.331 } \\ \end{gathered}

 \begin{gathered} {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\orange{\frak{ Population{\small_{(3 \; years)}} = 2662 }}}}}}}} \end{gathered}

 \\ \qquad{\rule{150pt}{1pt}}

 \bigstar Therefore :

❛❛ Population of the city after 3 years will be 2662 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions