the population of a city was 20,000 in the year 1997. it incresed at the rate of 5%p.a find the population at the end of year 2000?
No spamming
Answers
Answer:
=
Step-by-step explanation:
We know that, population increases in a compounded way.So in 2000, the population will be equal to Compound amount after 3 years @ 5% per annum.
Answer:
Step-by-step explanation:
\begin{gathered}\frak{Given:-}\begin{cases}\tt{Population\:was(P) = 20,000}\\\tt{Rate\:of\:interest(r) = 5\%}\\\tt{Time(n) = (2000-1997) = 3\: years}\\\tt{Population\:in\:2000=?}\end{cases}\end{gathered}
Given:−
⎩
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎧
Populationwas(P)=20,000
Rateofinterest(r)=5%
Time(n)=(2000−1997)=3years
Populationin2000=?
We know that, population increases in a compounded way.So in 2000, the population will be equal to Compound amount after 3 years @ 5% per annum.
{\underline{\underline{\bold{According\:to\:question:-}}}}
Accordingtoquestion:−
{\boxed{\bold\green{CA = P{(1+r)}^{n} }}}
CA=P(1+r)
n
\begin{gathered}\Rightarrow\tt CA = 20,000{(1+\dfrac{5}{100})}^{3} \\\\\\\Rightarrow\tt CA = 20,000 {(\dfrac{100+5}{100})}^{3} \\\\\\\Rightarrow\tt CA = 20,000 \times {(1.05)}^{3} \\\\\\\Rightarrow\tt CA = 20,000 \times 1.157625 \\\\\\\Rightarrow\huge{\boxed{\tt\green{CA = 23,152.5 }}}\end{gathered}
⇒CA=20,000(1+
100
5
)
3
⇒CA=20,000(
100
100+5
)
3
⇒CA=20,000×(1.05)
3
⇒CA=20,000×1.157625
⇒
CA=23,152.5
\rule{100}{2}
\because\tt\red{Population\:can't\:be \: in\:fraction}∵Populationcan
′
tbeinfraction
\therefore\bold\green{Population\:at\:the\:end\:of\:2000 = 23,153}∴Populationattheendof2000=23,153
{\boxed{\bold\purple{Population\:in\:2000 = 23153 }}}
Populationin2000=23153