Math, asked by vanshikasaini82, 3 months ago

The population of a place increased to 54000 in 2003 at a rate of 5% per annum (i) find the population in 2001 (ii) what would be its population in 2005?​

Answers

Answered by chetankant999
0

Answer:

Step-by-step explanation:

(i) Here, A_{2003}=\ Rs.\ 54,000A  

2003

​  

= Rs. 54,000, R = 5%, n= 2 years

Population would be less in 2001 than 2003 in two years.

Here the population is increasing.

\therefore A_{2003}=P_{2001}\left(1+\frac{R}{100}\right)^n∴A  

2003

​  

=P  

2001

​  

(1+  

100

R

​  

)  

n

 

\Rightarrow54000=P_{2001}\left(1+\frac{5}{100}\right)^2⇒54000=P  

2001

​  

(1+  

100

5

​  

)  

2

 

\Rightarrow54000=P_{2001}\left(1+\frac{1}{20}\right)^2⇒54000=P  

2001

​  

(1+  

20

1

​  

)  

2

 

\Rightarrow54000=P_{2001_{ }}\left(1+\frac{1}{20}\right)^2⇒54000=P  

2001  

​  

 

​  

(1+  

20

1

​  

)  

2

 

\Rightarrow54000=P_{2001}\left(\frac{21}{20}\right)^2⇒54000=P  

2001

​  

(  

20

21

​  

)  

2

 

\Rightarrow54000=P_{2001}\times\frac{21}{20}\times\frac{21}{20}⇒54000=P  

2001

​  

×  

20

21

​  

×  

20

21

​  

 

\Rightarrow P_{2001}=\frac{54000\times20\times20}{21\times21}⇒P  

2001

​  

=  

21×21

54000×20×20

​  

 

\Rightarrow P_{2001}=48980⇒P  

2001

​  

=48980 (Approx)

(ii) According to question, population is increasing. Therefore population in 2005,

A_{2005}=P\left(1+\frac{R}{100}\right)^nA  

2005

​  

=P(1+  

100

R

​  

)  

n

 

= 54000\left(1+\frac{5}{100}\right)^254000(1+  

100

5

​  

)  

2

 

= 54000\left(1+\frac{1}{20}\right)^254000(1+  

20

1

​  

)  

2

 

= 54000\left(\frac{21}{20}\right)^254000(  

20

21

​  

)  

2

 

= 54000\times\frac{21}{20}\times\frac{21}{20}54000×  

20

21

​  

×  

20

21

​  

 

= 59,535

Hence population in 2005 would be 59,535.

Answered by itzHATERxx
0

Answer:

photo par answers print kar diya h ji

Attachments:
Similar questions