The Population of a place increased to 54000 in 2003 at the rate of 5% per annum. Find the population in 2001 and in 2005 ?
Answers
we use formula of amount of compound interest to find population
A( 2003)= 54,000,
R =
5%,
n = 2
years
In 2001 Population would be less than 2003 in two years.
A(2003)= P(2001)(1+R/100)^n
54000 = P (2001)(1+5/100)²
54000 = P(2001)(1+1/20)²
54000= P(2001)(21/20)²
54000 = P(2001)((21×21)/(20×20))
P(2001)=( 54000×20×20)/21×21
Population in 2001 = 48979.59= 48980(approx)
(ii) ATQ, population is increasing. Therefore population in 2005,
A(2005)= P(1+R/100)^n
= 54000(1+5/100)²
= 54000(1+1/20)²
= 54000( 21/20)²
= 54000(21/20)× (21/20)
=( 54000× 441)/ 400
=( 540×441)/4
= 238140/4
= 59535
Population in 2005= 59535
==========================================================
Hope this will help you....
PLZZZ MARK IT AS THE BRAINLIEST
Answer :
Population in 2001 is 48980 approximately.
Population in 2005 is 59535.
Step-by-step explanation :
Given, Population of place in 2003 = 54000
It has got a increase of 5% per annum.
So, 5% is compounded rate.
Using the formula,
Here,
A = population in year 2003 = 54000
P = population in year 2001
R = 5%
n = number of years = 2003 - 2001 = 2
Substituting the values in formula,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Population in 2001 is 48980 approximately.
Now,
Given, Population of place in 2003 = 54000
It has got a increase of 5% per annum.
So, 5% is compounded rate.
Using the formula,
Here,
A = population in year 2003 = 54000
P = population in year 2001
R = 5%
n = number of years = 2005 - 2003 = 2
Substituting the values in formula,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Population in 2005 is 59535.