The population of a town increases by 20% annually. What is the population after 2 years, if the present population is 2500?
a. 3250
Marked out of
1.00
O b. 3500
Pflag
O c. 3600
quostion
d. 3700
Type here to search
Answers
Answer:
216000/1.20 = 180,000
180000/1.20=150000. 150,000 was 2 yrs ago
216000*1.20 =259,200
259200 * 1.20=311040 2 yrs from now
Answer:
★ Understanding the question :
» Here we have a right circular cylinder with height 10 cm and circumfernce of it's base is 44 cm.We had to find out it's volume!
» Firstly we will find it's radius by using formula : circumference of base ; which is in circular shape , then we will find it's volume with formula of volume of cylinder.
Let's do it !!
ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━
✎ Using formula of circumference of ㅤㅤcircle :
\qquad:\implies\:\sf Circumference_{(Circle)} = 2\pi r :⟹Circumference
(Circle)
=2πr
★ Values that we have :
Circumference of circle = 44 cm
π = 22/7
✎ Putting all values in the formula :
\qquad:\implies\:\sf 44 = 2\:\times\:\dfrac{22}{7}\:\times\: r :⟹44=2×
7
22
×r
\qquad:\implies\:\sf 44 = \dfrac{44}{7}\:\times\: r :⟹44=
7
44
×r
\qquad:\implies\:\sf 44\:\times\:\dfrac{7}{44} = \: r :⟹44×
44
7
=r
\qquad:\implies\:\sf \cancel{44}\:\times\:\dfrac{7}{\cancel{44}} = \: r :⟹
44
×
44
7
=r
\qquad:\implies\:\bold {radius = \red{7\:cm}}:⟹radius=7cm
✎ Using formula of volume of cylinder :
\qquad:\implies\:\sf Volume_{(Cylinder)} = \pi r^2 h :⟹Volume
(Cylinder)
=πr
2
h
★ Values that we have :
Radius = 7 cm
Height = 10 cm
π = 22/7
✎ Putting all values in the formula :
\:\:\::\mapsto\:\sf Volume_{(Cylinder)} = \dfrac{22}{7}\:\times\:7\:\times\:7\:\times\:10 :↦Volume
(Cylinder)
=
7
22
×7×7×10
\:\:\::\mapsto\:\sf Volume_{(Cylinder)} = \dfrac{22}{\cancel{7}}\:\times\:\cancel{7}\:\times\:7\:\times\:10 :↦Volume
(Cylinder)
=
7
22
×
7
×7×10
\:\:\::\mapsto\:\sf Volume_{(Cylinder)} = 22\:\times\:7\:\times\:10 :↦Volume
(Cylinder)
=22×7×10
\:\:\::\mapsto\:\bold {Volume_{(Cylinder)} = \red{1,540\:cm^3}}:↦Volume
(Cylinder)
=1,540cm
3
This is the required answer.
\large\underline{\boxed{\tt{Volume\:of\:cylinder\:=\:\rm\purple{1,540\:cm^3}}}}
Volumeofcylinder=1,540cm
3
\qquad\:\:\:\:\:\underline{\mathcal {Stay\:home\:,\:Stay \: safe\: \ddot{\smile}}}
Stayhome,Staysafe
⌣
¨