Math, asked by ritukala9610, 11 months ago

The population of a town is 32000. It increases by 15 percent during the first year. During the second year it decreases by 20 percent and increased by 2 percent during the third year? What is the population after 3 years?

Answers

Answered by raghav2870
3

Step-by-step explanation:

Formula for finding % of something = number/100× other number, for example to find 10% of 500=10/100×500

15 percent of 32000= 4800

20 percent of 32000=6400

2 percent of 32000=640

Total population increased =4800+640=5440

Total population after 3 years = 6400-5440=960

32000-960=31040 Answer

Answered by GulabLachman
0

Given: The population of a town is 32000. It increases by 15 percent during the first year. During the second year it decreases by 20 percent and increased by 2 percent during the third year.

To find: Population after 3 years

Solution: Population at the beginning= 32000

It increases by 15% in first year. Therefore, number of people increased

= 15% of 32000

= (15/100) × 32000

= 0.15 × 32000

= 4800

Therefore, population after first year

= Population at beginning+ People increased after first year

= 32000 + 4800

= 36800

It decreases by 20% in second year. Therefore, number of people decreased

= 20% of 36800

= (20/100) × 36800

= 0.2 × 36800

= 7360

Therefore, population after second year

= Population after first year - People decreased after second year

= 36800 - 7360

= 29440

It increases by 2% in third year. Therefore, number of people increased

= 2% of 29440

= (2/100) × 29440

= 0.02 × 29440

= 588.8

which is approximately equal to 589.

Therefore, population after third year

= Population after second year + People increased after third year

= 29440 + 589

= 30029

Therefore, the population of the town after 3 years is 30,029.

Similar questions